www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Metrik
Metrik < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Metrik: Hilfe Analysis II
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 21.01.2013
Autor: ellegance88

Hallo ich habe mal eine Frage. Ich lerne für meine Analysis II Klausur.
Themenbereiche:
- Integrale
- Metrische und topologische Räume
- Partielle Differenzierbarkeit
- Stetigkeit

Ich komme eigentlich mit fast allem so ein bischen klar, außer bei metrische und topologische Räume.
Ich kann zwar sagen wann etwas eine Metrik ist, indem ich die drei Axiome überprüfe aber mehr auch nicht. Kann mir jmd helfen und es leicht erklären.

Norm, Kompaktheit, Rand etc. Ich verstehe das einfach nicht. Habe mir oft die Skripte durchgelesen. Habe sogar das Tutorium Buch Analysis II von Modler.
Brauche viele beispiele. zb auch zum Satz von heine borel. Ich glaube damit beweißt man die Kompaktheit (Jede kompakte Teilmenge A eines metrischen Raumes X ist beschränkt und abgeschlossen. Ja aber wie beweis ich es? bzw wie berechne ich das?). Im internet findet man nur die Sätze oder Beispiele wo man nicht den Zusammenhang versteht.


Hätte einer kurz Zeit mir die Sachen zu erklären? oder hätte jmd gute Links, die ich noch nicht gelesen habe zu irgendwelchen Tutorien?

        
Bezug
Metrik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Di 22.01.2013
Autor: rainerS

Hallo!

> Hallo ich habe mal eine Frage. Ich lerne für meine
> Analysis II Klausur.
> Themenbereiche:
>  - Integrale
>  - Metrische und topologische Räume
>  - Partielle Differenzierbarkeit
>  - Stetigkeit
>  
> Ich komme eigentlich mit fast allem so ein bischen klar,
> außer bei metrische und topologische Räume.
> Ich kann zwar sagen wann etwas eine Metrik ist, indem ich
> die drei Axiome überprüfe aber mehr auch nicht. Kann mir
> jmd helfen und es leicht erklären.

Eine Metrik ist die Verallgemeinerung des Begriffes "Distanz". Die euklidische Metrik ist ja genau der übliche Abstand zweier Punkte. Wie das bei Verallgemeinerungen nun mal so ist, müssen beliebige Metriken überhaupt nicht mehr anschaulich sein.

>  
> Norm, Kompaktheit, Rand etc.

Die Norm kannst du als Verallgemeinerung der Länge eines Vektors auffassen.

Der Rand einer Menge ist genau das: die Punkte, die zwischen dem Inneren und dem Äußeren liegen. Bei einer Kreissscheibe ist z.B. der Rand gerade die Kreislinie, die die Kreissscheibe außen begrenzt.

> Ich verstehe das einfach
> nicht. Habe mir oft die Skripte durchgelesen. Habe sogar
> das Tutorium Buch Analysis II von Modler.
>  Brauche viele beispiele. zb auch zum Satz von heine borel.
> Ich glaube damit beweißt man die Kompaktheit (Jede
> kompakte Teilmenge A eines metrischen Raumes X ist
> beschränkt und abgeschlossen.

Solange X eine Teilmenge eines endlichdimensionalen euklidischen Raumes ist, ja.

> Ja aber wie beweis ich es?
> bzw wie berechne ich das?). Im internet findet man nur die
> Sätze oder Beispiele wo man nicht den Zusammenhang
> versteht.

Kompaktheit ist ein bischen schwieriger. Es ist eine Art Verallgemeinerung von "abgeschlossen und beschränkt" auf beliebige (nicht nur metrische) Räume.

> Hätte einer kurz Zeit mir die Sachen zu erklären? oder
> hätte jmd gute Links, die ich noch nicht gelesen habe zu
> irgendwelchen Tutorien?

Ein gutes Lehrbuch der Topologie. Ich fand damals das von Jänisch ziemlich gut, aber das ist 'ne Weile her.

  Viele Grüße
    Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]