www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Abbildung,Quotientenvektorraum
Abbildung,Quotientenvektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildung,Quotientenvektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Di 24.01.2006
Autor: kampfsocke

Aufgabe
Es sei K ein Körper und V ein K-Vekorraum. Weiter sei  [mm] \nu \inEnd(V). [/mm]
Weiter sei  [mm] \pi:V \toV/Ker \nu, [/mm] x [mm] \to [/mm] x+Ker [mm] \nu. [/mm]
Zeigen Sie: [mm] \pi \circ \gdw \nu²=\nu [/mm]

Hallo allerseits, ich sitze mal wieder am Übungsblatt und komme nicht weiter. Es muss es einfach klar Lösung geben, aber ich komme nicht wirklich voran. Ich kann alles mögliche umschreiben, zum Beispiel weiß ich das [mm] V/Ker\nu [/mm] dem Bild vom [mm] \nu (Im\nu) [/mm] entspricht, aber wie zeige ich die geforderte Bedingung? Wenn mir jemand helden kann, wäre ich sehr dankbar, aber ich versuche weiter was zu finden.
Danke,
Sara

        
Bezug
Abbildung,Quotientenvektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Di 24.01.2006
Autor: Stefan

Hallo Sara!

Bitte überprüfe die Aufgabenstellung.

Liebe Grüße
Stefan

Bezug
                
Bezug
Abbildung,Quotientenvektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:27 Di 24.01.2006
Autor: kampfsocke

Ja, du hast recht, sie ist Falsch geschrieben. [mm] \nu [/mm] soll Element von End(V) sein. Also Element von Hom(V,V). Weiter ist  [mm] \pi [/mm] :V [mm] \to [/mm] V/Ker [mm] \nu [/mm] und x [mm] \mapsto [/mm] x+Ker [mm] \nu. [/mm]
Und ich soll zeigen das [mm] \pi \circ \nu \gdw \nu [/mm] ² = [mm] \nu. [/mm]

Hoffe jetzt stimmt es.
Danke schon mal

Bezug
        
Bezug
Abbildung,Quotientenvektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Mi 25.01.2006
Autor: mathiash

Hallo Sara,

also Deine Aufgabenstellung ist auch in der auf Anregung von Stefan hin korrigierten Version formal noch nicht korrekt.

Lass mich raten, was gemeint sein koennte:

[mm] v^2=v \:\:\Longleftrightarrow\:\: \pi [/mm] | [mm] im(v)\colon im(V)\to V\slash [/mm] kern(v) bijektiv

Probieren wir es:

[mm] ''\Rightarrow [/mm] ''   Klar, denn nimm eine Klasse  [mm] [x]_{kern(v)}, [/mm] dann ist ja [mm] v^2(x)=v(x), [/mm]
also v(x-v(x))=0 und somit also per def. [mm] v(x)\in [x]_{kern(v)}. [/mm] Das zeigt Surjektivitaet.
Injektivitaet: Angenommen  [mm] \pi(v(x))= [0]_{kern(v)}. [/mm]
Wir muessen zeigen: v(x)=0.
Es ist [mm] v^2(x)=v(x). [/mm] Waere also [mm] v(x)\neq [/mm] 0, so koennte demnach auch nicht v(v(x))=0 sein,
also muss bereits v(x)=0 gelten.

[mm] ''\Leftarrow [/mm] "  Betrachte [mm] x\in [/mm] V, wir wollen zeigen: [mm] v^2(x)=v(x). [/mm]

Es ist [mm] v(x)\in [/mm] Im (v), und es gibt kein [mm] y\in [/mm] V mit [mm] v(x)\neq [/mm] v(y) und [mm] v^2(x)=v^2(y). [/mm]
Wenn andererseits [mm] v^2(x)\neq [/mm] v(x) waere, so muesste es aber ein [mm] z\in [/mm] Im(v) geben
mit v(z-v(x))=0, d.h. ein [mm] y\neq [/mm] x mit v(y)=z und somit [mm] v^2(y)=v^2(x), [/mm] ein Widerspruch.

Also gilt [mm] v^2=v. [/mm]

Viele Gruesse,

Mathias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]