www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Abbildungsmatrix
Abbildungsmatrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:52 Sa 25.06.2011
Autor: WhiteKalia

Aufgabe
Gegeben sei eine lineare Abbildung $f$ : [mm] \IR^5 \to \IR^4 [/mm] mit der folgenden Abbildungsmatrix bzgl. der Einheitsbasis E:

[mm] M_E(f) [/mm] = [mm] \pmat{ -2 & 0 & 0 & 0 & -2 \\ 0 & 1 & -2 & 0 & 0 \\ -2 & 0 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 & 3} [/mm]

a) Bestimmen Sie invertierbare Matrizen S und T , so dass

$M^'$ = S * [mm] M_E(f) [/mm] * [mm] T^{- 1} [/mm] = [mm] \pmat{ 1 & 0 & & \cdots & & 0 \\ 0 & \ddots & & & & &\\ & & 1 & \ddots & & \vdots \\ \vdots & & \ddots & 0 & & \\ & & & & \ddots & 0 \\ 0 & & \cdots & & 0 & 0} [/mm]

b) Geben Sie zwei Basen A, B an, so dass die Abbildungsmatrix [mm] M^A_B(f) [/mm] gerade $M^'$ entspricht.

c) Lesen Sie aus b) den Kern und das Bild von f ab (mit Begründung).

Hallo!

Leider habe ich keine Ahnung, wie ich an diese Aufgabe rangehen soll...
Unser Mathetutor meinte, wenn wir diese Aufgabe lösen können, dann haben wir das Thema Basiswechsel und Koordinatentransformation verstanden, d.h. dann wohl, das ichs absolut nicht verstanden habe.^^
Ich wäre für einen Tipp, wie ich hier ran gehen soll, sehr dankbar.

Grüße
WhiteKalia

        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Sa 25.06.2011
Autor: scherzkrapferl


> Gegeben sei eine lineare Abbildung [mm]f[/mm] : [mm]\IR^5 \to \IR^4[/mm] mit
> der folgenden Abbildungsmatrix bzgl. der Einheitsbasis E:
>  
> [mm]M_E(f)[/mm] = [mm]\pmat{ -2 & 0 & 0 & 0 & -2 \\ 0 & 1 & -2 & 0 & 0 \\ -2 & 0 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 & 3}[/mm]
>  
> a) Bestimmen Sie invertierbare Matrizen S und T , so dass
>  
> [mm]M^'[/mm] = S * [mm]M_E(f)[/mm] * [mm]T^{- 1}[/mm] = [mm]\pmat{ 1 & 0 & & \cdots & & 0 \\ 0 & \ddots & & & & &\\ & & 1 & \ddots & & \vdots \\ \vdots & & \ddots & 0 & & \\ & & & & \ddots & 0 \\ 0 & & \cdots & & 0 & 0}[/mm]

Deine Formel kann man auch so schreiben [mm] A'=SAT^{-1}. [/mm]


>  
> b) Geben Sie zwei Basen A, B an, so dass die
> Abbildungsmatrix [mm]M^A_B(f)[/mm] gerade [mm]M^'[/mm] entspricht.
>  
> c) Lesen Sie aus b) den Kern und das Bild von f ab (mit
> Begründung).



in deinem Beispiel geht es um einfache Basentransformation. Am besten liest du dir in eurem lineare Algebra Skript das Thema "Umrechnung der Matrixdarstellung bei Basiswechsel" durch.

Ein solches Beispiel würde ich am besten so lösen:
Als erstes errechnest du dir die Transformationsmatrix T des Basiswechsels von B zu B', anschließend die Inverse [mm] T^{-1}. [/mm]
die Transformationsmatrix S zum Basiswechsel von C zu C' errechnest du anschließend. deine Matrix A' hast du ja gegeben ;)

Das komplizierteste ist wahrscheinlich das errechnen der Transformationsmatrizen.


LG Scherzkrapferl


ps: Falls ich etwas falsches geschrieben habe, bitte um Korrektur.

Bezug
                
Bezug
Abbildungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 So 26.06.2011
Autor: WhiteKalia


> Ein solches Beispiel würde ich am besten so lösen:
>  Als erstes errechnest du dir die Transformationsmatrix T
> des Basiswechsels von B zu B',

Die Basis B wären dann die Einheitsvektoren
B = ( [mm] \vektor{1 \\ 0 \\ 0 \\ 0}, \vektor{0 \\ 1 \\ 0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ 0}, \vektor{0 \\ 0 \\ 0 \\ 1} [/mm] )
oder?
Was wäre dann B'? Wäre das dann die Basis, die man erhält, wenn man [mm] M_E(f) [/mm] mit dem Gaußverfahren soweit "minimiert" bis man linear unabhängige Vektoren erhält? Also quasie die Basis von [mm] M_E(f) [/mm] direkt errechnet?

Danke schonmal für die Hilfe und die Geduld.^^

Bezug
                        
Bezug
Abbildungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:32 So 26.06.2011
Autor: scherzkrapferl


> > Ein solches Beispiel würde ich am besten so lösen:
>  >  Als erstes errechnest du dir die Transformationsmatrix
> T
> > des Basiswechsels von B zu B',
>
> Die Basis B wären dann die Einheitsvektoren
> B = ( [mm]\vektor{1 \\ 0 \\ 0 \\ 0}, \vektor{0 \\ 1 \\ 0 \\ 0}, \vektor{0 \\ 0 \\ 1 \\ 0}, \vektor{0 \\ 0 \\ 0 \\ 1}[/mm]
> )
> oder?

"Gegeben sei eine lineare Abbildung $ f $ : $ [mm] \IR^5 \to \IR^4 [/mm] $ mit der folgenden Abbildungsmatrix bzgl. der Einheitsbasis E: " - steht ja schon in deiner Angabe.

> Was wäre dann B'? Wäre das dann die Basis, die man
> erhält, wenn man [mm]M_E(f)[/mm] mit dem Gaußverfahren soweit
> "minimiert" bis man linear unabhängige Vektoren erhält?
> Also quasie die Basis von [mm]M_E(f)[/mm] direkt errechnet?
>  
> Danke schonmal für die Hilfe und die Geduld.^^


hab's zwar nicht nachgerechnet aba das könnte stimmen ^^

LG Scherzkrapferl


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]