Abi-Aufgabe-Schulhofgestaltung < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:34 Mi 11.05.2011 | Autor: | oOoOo |
Aufgabe | http://ne.lo-net2.de/selbstlernmaterial/m/a/ga2/HH2007lk4%20-%20Schulhofgestaltung.pdf
Aufgabe a)...und
ermitteln Sie für diesen Wert die Menge aller x ∈ IR , sodass ebenfalls y ∈ IR .
Aufgabe c)Untersuchen Sie die Umgebung der gemeinsamen Punkte der Funktionen f und g im Hinblick auf „Knicks“ im Bahnverlauf.
Begründen Sie, warum man mit dem Fahrrad die Bahn von A nach C und dann nach B und D und nicht in der Reihenfolge von A nach B und dann nach C und D durchfahren sollte, wenn man mit hoher Geschwindigkeit fahren möchte. |
Hallo, ich habe ein Problem mit der o.g. Aufgabe:
Und zwar bezieht sich mein Problem auf die Aufgabe a) und c), wie in der Aufgabenstellung erwähnt
Die dazugehörige Lösung hilft mir leider auch nicht weiter, da ich irgendwie nichteinmal die Aufgabe verstehe:
Für |x| > 2 wird 4x2 – x4 = x2 (4 – x2) negativ, weil dann x2 > 4 ist. In diesem
Fall ist y ∉ IR . Sonst ist der Term nicht negativ.
Die gesuchte Menge ist daher x ∈ [–2;2]. Das entspricht ebenfalls dem Graphen.
Aufgabe c)
Die Untersuchung auf "Knicks" bezieht sich ja darauf, dass die 1. Ableitung an den entsprechenden gemeinsamen Punkten (-2,0,2) identisch sein muss. Dies ist ja, wie man der Zeichnung entnehmen kann bei -2 und 2 der Fall. Bei 0 ist dies natürlich nicht knickfrei.
Ich verstehe leider auch nicht was die Lösung unter anderem unter EInbeziehung von lim...u. ä. bedeutet ?!
Darüber hinaus glaube ich einen Fehler entdeckt zu haben, den ich jedoch noch nicht rechnerisch nachgewiesen habe:
Bei Aufgabe e) steht als Lösung, dass ca 26kg Samen benötigt werden. Bei aufgabe f wiederum werden ca 80kg gebraucht, obwohl die Fläche sich verkleinert hat???!! oder bezog sich der wert 26 kg nur auf ein Viertel?
Ich wäre um entsprechende Hilfe sehr dankbar!!
Die anderen Aufgaben habe ich nämlich soweit so gut verstanden!!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:27 Mi 11.05.2011 | Autor: | Blech |
Hi,
wir haben einen Formeleditor. Wollte ich hier nur mal wertfrei in den Raum stellen.
zur a)
[mm] $y^2=-1,$
[/mm]
dann ist [mm] $y\notin \IR$. [/mm] Stimmst Du hier mit mir überein? (sonst wüßte ich gerne, welche reelle Zahl y Deiner Ansicht nach ist. =)
Genauer gesagt ist [mm] $y\in\IR$ [/mm] dort, wo [mm] $y^2\geq [/mm] 0$. Wo ist [mm] $y^2\geq [/mm] 0$? An den Stellen, an denen [mm] $y^2=4x^2-x^4\geq [/mm] 0$.
zur c)
> Ich verstehe leider auch nicht was die Lösung unter anderem unter EInbeziehung von lim...u. ä. bedeutet ?!
Was ist denn $f'(0)$?
> oder bezog sich der wert 26 kg nur auf ein Viertel?
Solltest Du die Frage nicht selber beantworten können?
Kurzfassung: 80€ ist falsch; was ist richtig? =)
ciao
Stefan
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:35 Fr 13.05.2011 | Autor: | oOoOo |
Hallo,
nach eingehender Bearbeitung bin ich nun doch etwas schlauer:
erstmal aufgabe f) scheinbar ist die lösung falsch, ich erhalte als Samenmenge nicht wie dort benannt 80 kg, sondern 20 kg. Man hat ja schon bei der Integralrechnung in aufgabe e) durch die Multiplikation mit dem Faktor 4 alle vier Flächenbereiche miteinbezogen. In Aufgabe e) ist dies demnach doppelt gemoppelt.
richtig?
Aufgabe a)
Ist mit Menge die Definitions- und Wertemenge gemeint?
Sowohl am Graphen als auch rechnerisch kann man ja sehen, dass lediglich dem Definitionsbereich von -2 bis 2 Werte zugeordnet sind, die [mm] \in \IR [/mm] sind. Im falle eines Definitionsbereichs außerhalb von -2 bis 2 ist die Wertemenge nicht definiert, folglich also kein [mm] \in \IR [/mm] .
richtig?
edit: kurze Anmerkung noch: warum ist bei der Begründung in a) das x als Betrag geschrieben? da es sowohl für kleiner -2, als auch größer 2 gilt?
So nun kommt die für mich etwas komplexere Aufgabe c)
Ich verstehe, dass an allen drei Schnittpunkten -2,0,2 die Steigung von f an jenen Stellen nicht definiert ist, da man der Ableitungsfunktion nach, nicht durch 0 teilen kann.
Zu -2 und 2 steht: Da der Nenner der ersten Ableitung an den Definitionsrändern nicht definiert ist, besitzt die erste Ableitung dort jeweils eine Polstelle. Der Graph von f trifft also senkrecht auf die x-Achse. Da dies auch entsprechend für g(x) gilt, gehen die beiden Graphen an den Rändern ohne Knick und Sprung in einander über.
--- > Eine Polstelle an -2 und 2, so trifft der Graph genau senkrecht auf die x-Achse. Da jener Vorfall sowohl für g(x) als auch für f(x) gilt, gehen sie ohne Knick einander über.
Wenn man jedoch als Begründung nimmt, dass dadurch dass an den Stellen -2 und 2 eine Polstelle liegt, da keine Wertemenge definiert ist, müsste dies doch auch für f'(0) gelten?
Dort ist auch kein Wert definiert.
Zur Stelle 0: Das Problem was ich, lediglich anhand der Zeichnung sehe ist, dass dies ein Knick ist. Folglich gibt es dort unendlich viele Tangenten, also ist natürlich auch kein Wert definiert.
Das "Problemlösungsverfahren" mithilfe des lim verstehe ich dabei jedoch nicht ganz.
Ich verstehe dabei, dass die Steigung für x kleiner 0 und größer 0 berechnet wird und man dabei auf 2 unterschiedliche Werte kommt (klar wegen des Knicks). Das Verfahren müsste mir dabei jedoch nochmals netterweiße außführlicher erläutert werden.
Außerdem ist mir folgender Satz noch etwas suspekt: f'(x) ist somit an der stelle x=0 nicht stetig ergänzbar und f an der Stelle x=0 nicht differenzierbar. Der Graph von f besitzt dort also einen Knick.
---> Dass ein Knick vorhanden ist, wird durch das Faktum f'(x) ist an der Stelle x=0 nicht stetig ergänzbar. Woher kommt das? aus der vorherigen lim- Rechnung? bitte etwas ausführlicher erklären.
Nochmals danke für die Hilfe!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:24 Fr 13.05.2011 | Autor: | Blech |
Hi,
> erstmal aufgabe f) scheinbar ist die lösung falsch, ich erhalte als Samenmenge nicht wie dort benannt 80 kg, sondern 20 kg. Man hat ja schon bei der Integralrechnung in aufgabe e) durch die Multiplikation mit dem Faktor 4 alle vier Flächenbereiche miteinbezogen. In Aufgabe e) ist dies demnach doppelt gemoppelt.
> richtig?
Ist ein paar Tage her, aber 20kg klingt richtig. Der Faktor 3/4 läßt sich aus dem Integral ziehen, also ist das Ergebnis vom kleineren Teil 3/4 vom alten Ergebnis.
> Sowohl am Graphen als auch rechnerisch kann man ja sehen, dass lediglich dem Definitionsbereich von -2 bis 2 Werte zugeordnet sind, die $ [mm] \in \IR [/mm] $ sind.
Ja.
> edit: kurze Anmerkung noch: warum ist bei der Begründung in a) das x als Betrag geschrieben? da es sowohl für kleiner -2, als auch größer 2 gilt?
Ja.
> Wenn man jedoch als Begründung nimmt, dass dadurch dass an den Stellen -2 und 2 eine Polstelle liegt, da keine Wertemenge definiert ist, müsste dies doch auch für f'(0) gelten?
> Dort ist auch kein Wert definiert.
Polstelle ist nicht das gleiche wie Definitionslücke. Bei [mm] $\pm [/mm] 2$ wird der Nenner 0 und der Zähler nicht, also ist's ne Polstelle. Bei 0 werden sowohl Nenner als auch Zähler 0, und wenn Du den Grenzwert bildest siehst Du dann ja auch, daß die Funktion dort nicht gegen [mm] $\pm \infty$ [/mm] geht.
> Das Verfahren müsste mir dabei jedoch nochmals netterweiße außführlicher erläutert werden.
Wenn Du mal die obere Hälfte der linken Seite und die untere Hälfte der rechten Seite zusammenklebst, dann ist bei 0 sowohl die Funktion als auch die Ableitung stetig ergänzbar.
-Die Funktion ist stetig ergänzbar, d.h. es klafft keine Lücke in der Bahn (vgl die Bahn mit x+1 für x>0 und x-1 für x<0)
-Die Ableitung ist stetig ergänzbar, d.h. der Graph hat keinen Knick. Sagen wir Du fährst von links auf die Definitionslücke zu, Du kommst in einer bestimmten Richtung rein, die Richtung ist die Tangentensteigung. Jetzt fährst Du über die Definitionslücke (die ja 0 breit ist) und stellst verzückt fest, daß Du korrekt auf der rechten Hälfte weiterfährst. Denn die geht ja (fast) an der gleichen Stelle und (fast) in der gleichen Richtung weiter.
Nehmen wir die beiden oberen Hälften, und Du folgst der einen Bahn in Richtung Definitionslücke dann schießt Du über die Definitionslücke und merkst plötzlich, daß die Bahn ja links abgebogen ist.
Nehmen wir wieder x+1 f. x>0 und x-1 f. x<0 und Du fährst auf die Definitionslücke zu, dann zeigt Dein Fahrrad zwar in die richtige Richtung, aber Du fährst trotzdem ins Leere, weil die Bahn plötzlich versetzt ist.
Oder anders: Die erste Ableitung ist die Steigung. Hat die Steigung einen Sprung, dann hat der Graph einen Knick.
ciao
Stefan
btw. wer ist so blöd und baut eine *Fahrradbahn* mit Kreuzung und schön viel Anlauf auf einen Schulhof.
|
|
|
|