Ableitung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | f(x)= [mm] x*\wurzel[2]{16-x²} [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hab schon wieder eine Frage. ;)
Ich habe immer ziemliche Probleme beim Ableiten von Wurzelfunktionen.
Benutze immer die Ketten- oder Produktregel, je nach Funktion, aber mach oft kleinere Fehler.
Habt ihr Tipps für mich wie ich das am besten hinbekomme, vielleicht am Beispiel der oben genannten Funktion?
Es waär lieb wenn ihr mir die erste und zweite Ableitung erklären könntet.
Vielen, vielen, vielen lieben Dank!
Kathi
|
|
|
|
Hi Kathi,
mhh.. einen Tipp, ich denk üben üben üben ist eine der wenigen Möglichkeiten um Fehler zu vermeiden, solange es zumindestens keine Denkfehler sind.
Wie du ja schon richtig erkannt hast brauchst du hier die Produkt- und die Kettenregel. Von der Produktregel her weisst du ja schon vorher das du die Ableitung von [mm]\wurzel[2]{16-x²}[/mm] brauchst.
Ich mach deswegen die Ableitung schon einmal vorher, damit das nach beim anwenden der Produktregel übersichtlicher bleibt. Ist aber geschmackssache.
Um das abzuleiten brauchen wir die Kettenregel:
äußere Ableitung:
[mm]u=\wurzel{u}[/mm]bzw.
[mm]=u^0,5[/mm]
[mm]u'=\bruch{1}{2}u^{-0,5}[/mm]
kann man auch als Bruch mit Wurzel schreiben.
Das wäre dann
[mm]\bruch{1}{2*\wurzel{16-x^2}}[/mm]
So u wieder einsetzen
[mm]\bruch{1}{2}*(16-x^2)^{-0,5}[/mm]
innere Ableitung
[mm]v=16-x^2[/mm]
[mm]v'=2x[/mm]
Das ganze noch multiplizieren
[mm]\bruch{1}{2*\wurzel{16-x^2}}*2x[/mm]
also ist die Ableitung:
[mm]\bruch{2x}{2*\wurzel{16-x^2}}[/mm]
Kommen wir jetzt zur Produktregel:
[mm]uv=u'v+uv'[/mm]
vielleicht einmal auflisten was, was ist
[mm]u=x[/mm]
[mm]u'=1[/mm]
[mm]v=\wurzel[2]{16-x²}[/mm]
[mm]v'=\bruch{2x}{2*\wurzel{16-x^2}}[/mm]
[mm]1*\wurzel[2]{16-x²}+x*\bruch{2x}{2*\wurzel{16-x^2}}[/mm]
[mm]\wurzel[2]{16-x²}+\bruch{2x^2}{2*\wurzel{16-x^2}}[/mm]
Kann man bestimmt noch weiter zusammenfassen, wüsste jetzt aber gerade nicht wie, weil so auch die 2. Ableitung nicht gerade einfach wird.
Ich hoffe, ich hab selbst nicht irgendwo einen Fehler eingebaut.
Ich würd halt immer alles genau und ordentlich aufschreiben.
Und eine eigene Vorghensweise entwickeln, an die man sich immer hält und nicht das eine mal das zu erst machen das nächste mal das, weil man sonst nicht weis was man schon gemacht hat.
Grüße,
Mareike
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:28 Do 21.09.2006 | Autor: | Fulla |
hi kathi!
mareike hat leider einen vorzeichenfehler gemacht....
[mm]f(x)=x*\wurzel{16-x^2}[/mm]
zuerst benutzt du die produktregel: [mm](u*v)'=u'*v+u*v'[/mm]
hier ist
[mm]u=x[/mm] und [mm]v=\wurzel{16-x^2}[/mm]
da wir auch die ableitungen (vor allem die der wurzel) brauchen:
[mm] v'=\left(\wurzel{16-x^2}\right)'=\left((16-x^2)^{0,5}\right)'=0,5*(16-x^2)^{0,5-1}*(-2x)=-x*(16-x^2)^{-0,5}=-\bruch{x}{\wurzel{16-x^2}}
[/mm]
dabei ist [mm]-2x[/mm] die innere ableitung
ok, jetzt aber die ganze ableitung:
[mm]f'(x)=1*\wurzel{16-x^2}+x*(-\bruch{x}{\wurzel{16-x^2}})=\wurzel{16-x^2}-\bruch{x^2}{\wurzel{16-x^2}}=...=\bruch{16-2x^2}{\wurzel{16-x^2}}[/mm]
für die zweite ableitung brauchst du dann noch die quotientenregel:
[mm] \left(\bruch{u}{v}\right)'=\bruch{u'*v-u*v'}{v^2}
[/mm]
[mm]f''(x)=\bruch{-4x*\wurzel{16-x^2}-(16-2x^2)*\bruch{-x}{\wurzel{16-x^2}}}{16-x^2}=...=\bruch{2x^3-48x}{(16-x^2)*\wurzel{16-x^2}}[/mm]
lieben gruß,
Fulla
|
|
|
|