www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung
Ableitung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 00:09 Do 05.10.2006
Autor: MacChevap

Aufgabe
Leiten sie f(x)=5*arccosx*(4x²-4)*cosx ab
</task>
Hallo!

Ich habe folgendes gemacht :

u=g(x)=(4x²-4)*cosx
u'=g(x)=8x*cosx-(4x²-4)*sinx

v=h(x)=5*arccosx
[mm] v'=h'(x)=-\bruch{5}{\wurzel{1-x²}} [/mm]

entsprechend u'v+uv' =>

(8x*cosx-(4x²-4)*sinx)*5*arccosx  +  [mm] ((4x²-4)*cosx)*-\bruch{5}{\wurzel{1-x²}} [/mm]
4 ausgeklammert und mit 5 multipliziert, zusammengefasst =>

[mm] f'(x)=20(2xcosx-x²sinx+sinx)arccosx-\bruch {(x²-1)*20cosx}{\wurzel{1-x²}} [/mm]

Stimmt das so weit und (wie)kann ich es besser zusammenfassen ?

Gruß

M.C.


        
Bezug
Ableitung: stimmt soweit
Status: (Antwort) fertig Status 
Datum: 02:58 Do 05.10.2006
Autor: Loddar

Hallo MacChevap!


Ich konnte keinen Fehler entdecken ... [ok] !!

Weiteres Zusammenfassen wäre wohl reine Geschmackssache. Ich würde z.B. die große Klammer zu Beginn noch ausmultiplizieren, ist aber kein Muss.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]