www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Ableitung der Zahl e
Ableitung der Zahl e < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung der Zahl e: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Mi 08.10.2008
Autor: nina1

Aufgabe
Untersuchen Sie folgende Funktion auf Extrema:

[mm] f(x)=2x\*e^{\bruch-{x^{2}}{8}} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe eine Frage wegen der 1.Ableitung.

Laut der allgemeinen Regel muss man einfach dass was oben steht ableiten und nach unten schreiben oder?

Z.B. [mm] f(x)=e^{x^2} [/mm] wäre dann [mm] f'(x)=2x*e^{x^2} [/mm]


Also würde man für die obige Aufgabenstellung für die 1.Ableitung folgendes herausbekommen?

=> [mm] f'(x)=-\bruch{x}{4}*2x\*e^{\bruch-{x^{2}}{8}} [/mm]

Stimmt das so?

Viele Grüße und danke im Voraus.

        
Bezug
Ableitung der Zahl e: Produktregel
Status: (Antwort) fertig Status 
Datum: 19:20 Mi 08.10.2008
Autor: XPatrickX

Hey!

> Untersuchen Sie folgende Funktion auf Extrema:
>  
> [mm]f(x)=2x\*e^{\bruch-{x^{2}}{8}}[/mm]

Da hast du was bei der { }-Setzung was durcheinander gebracht. Ich gehe davon aus, das die Funktion so lautet:
[mm] \red{f(x)=2x\cdot{}e^{-\bruch{x^{2}}{8}}} [/mm]



>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich habe eine Frage wegen der 1.Ableitung.
>  
> Laut der allgemeinen Regel

(Kettenregel)

> muss man einfach dass was oben
> steht ableiten und nach unten schreiben oder?
>  
> Z.B. [mm]f(x)=e^{x^2}[/mm] wäre dann [mm]f'(x)=2x*e^{x^2}[/mm]
>  

[daumenhoch]

>
> Also würde man für die obige Aufgabenstellung für die
> 1.Ableitung folgendes herausbekommen?
>  
> => [mm]f'(x)=-\bruch{x}{4}*2x\*e^{\bruch-{x^{2}}{8}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Stimmt das so?
>  

Nein, leider nicht. Du hast hier nicht beachtet, dass du ein Produkt hast. Daher musst du zusätzlich die Produkregel anwenden, mit $u=2x$ und $v=e^{-\bruch{x^{2}}{8}}}$

> Viele Grüße und danke im Voraus.

Gruß Patrick

Bezug
                
Bezug
Ableitung der Zahl e: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Mi 08.10.2008
Autor: nina1

Vielen Dank für die Hilfe, hat geklappt :-)

Bezug
        
Bezug
Ableitung der Zahl e: Ableitung von e ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:25 Mi 08.10.2008
Autor: Al-Chwarizmi

Nur zur Überschrift des threads:

Die Ableitung von  e  ist natürlich null, denn die
Eulersche Zahl e ist eine Konstante.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]