Ableitung höherer Ordnung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 10:18 Di 20.09.2011 | Autor: | CingChris |
Hallo ich komme aus der Elektrotechnik und muss etwas untersuchen. Bei einem linearen Verstärker kann eine Funktion [mm] U_a=f(U_e)[/mm] definiert werden. Durch eine Taylorentwicklung kann diese Funktion wie folgt dargestellt werden: [mm] U_a= U_a(U_{eA}) + \bruch{df}{dU_e}\big|_{U_{eA}}\cdot u_e + \bruch{d^2f}{dU_e^2}\big|_{U_{eA}}\cdot u_e^2+\bruch{d^3f}{dU_e^3}\big|_{U_{eA}}\cdot u_e^3 [/mm], wobei [mm] u_e = U_e-U_{eA}[/mm] gilt. Setzt man dann die Beziehung [mm] u_e = \hat{U}\cos(\omega t) [/mm] ein, kann diese Gleichung nach Termen mit Vielfachen der Kosinusschwingug geordnet werden, woraus dann eine wichtige Kenngröße berechnet werden kann. Jetz soll ein rückgekoppelter Verstärker untersucht werden, für den gilt [mm]g=\bruch{f}{1+\beta f}[/mm] wobei f die Übertragungsfunktion des rückgekoppelten Systems ist. Jetzt will ich dies ebenfalls in die Vielfachen der Kosinusfunktion und deren Koeffizienten umschreiben, jedoch scheitere ich daran. Kann mir jemand dabei helfen ?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:02 Di 20.09.2011 | Autor: | CingChris |
f stellt natürlich die Übertragungsfunktion des nicht rüchgekoppelten Systems dar
|
|
|
|
|
> Hallo ich komme aus der Elektrotechnik und muss etwas
> untersuchen. Bei einem linearen Verstärker kann eine
> Funktion [mm]U_a=f(U_e)[/mm] definiert werden. Durch eine
> Taylorentwicklung kann diese Funktion wie folgt dargestellt
> werden: [mm]U_a= U_a(U_{eA}) + \bruch{df}{dU_e}\big|_{U_{eA}}\cdot u_e + \bruch{d^2f}{dU_e^2}\big|_{U_{eA}}\cdot u_e^2+\bruch{d^3f}{dU_e^3}\big|_{U_{eA}}\cdot u_e^3 [/mm],
> wobei [mm]u_e = U_e-U_{eA}[/mm] gilt. Setzt man dann die Beziehung
> [mm]u_e = \hat{U}\cos(\omega t)[/mm] ein, kann diese Gleichung nach
> Termen mit Vielfachen der Kosinusschwingug geordnet werden,
> woraus dann eine wichtige Kenngröße berechnet werden
> kann. Jetz soll ein rückgekoppelter Verstärker untersucht
> werden, für den gilt [mm]g=\bruch{f}{1+\beta f}[/mm] wobei f die
> Übertragungsfunktion des rückgekoppelten Systems ist.
> Jetzt will ich dies ebenfalls in die Vielfachen der
> Kosinusfunktion und deren Koeffizienten umschreiben, jedoch
> scheitere ich daran. Kann mir jemand dabei helfen ?
Hallo CingChris,
ich denke, dass da in der Taylorentwicklung noch die
Fakultät-Terme fehlen ...
Um das Ganze etwas leichter schreiben und lesen zu können,
würde ich ein paar Umbezeichnungen vornehmen: möglichst
ohne verwirrende Indices.
Was du willst, ist wohl nicht so ganz einfach zu haben.
Du möchtest aus der Reihe für f eine Reihe für g machen.
Da müsste man über die Ableitungen von g gehen.
Schreiben wir alles mit der Variablen x, so wäre
$\ g(x)\ =\ [mm] \frac{f(x)}{1+\beta*f(x)}$
[/mm]
Nach Quotientenregel folgt
$\ g'(x)\ =\ [mm] \frac{f'(x)*(1+\beta*f(x))-f(x)*\beta*f'(x)}{(1+\beta*f(x))^2}$
[/mm]
Glücklicherweise vereinfacht sich das ein wenig:
$\ g'(x)\ =\ [mm] \frac{f'(x)}{(1+\beta*f(x))^2}$
[/mm]
Die Terme für g''(x) und g'''(x), welche man für ein
Taylorpolynom 3. Ordnung auch noch braucht, werden
aber wieder ziemlich kompliziert. Und dann noch die
Reihenterme einsetzen ... ich sehe das eher etwas düster ...
LG Al-Chw.
|
|
|
|