www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ableitung von Beträgen
Ableitung von Beträgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von Beträgen: Idee
Status: (Frage) beantwortet Status 
Datum: 20:06 Sa 21.01.2006
Autor: Geddie

Aufgabe
f(x) := |x| + |cos|

Bestimmen Sie davon die globalen Extrema auf dem Intervall [mm] [-\pi/2, 3\pi/2] [/mm]

Ich hab da mal ne Aufgabe gefunden in einem Buch, die mich vor Rätsel stellt. Wie kann ich diese Funktion denn ableiten bzw. ihre globalen Extrema bestimmen, wenn |x| überhaupt nicht differenzierbar ist?

        
Bezug
Ableitung von Beträgen: stückweise
Status: (Antwort) fertig Status 
Datum: 20:19 Sa 21.01.2006
Autor: leduart

Hallo,
einfach stückweise, auf den differenzierbaren Stücken differenziern, dann Extrema, und Werte an nicht diffb. Stellen noch auf globale max untersuchen!
Gruss leduart

Bezug
                
Bezug
Ableitung von Beträgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:14 So 22.01.2006
Autor: Geddie

Das heißt ich soll den |x| erst mal ohne die 0 differenzieren?!!? Aber was meinst du mit Bestimmen der Maxima an nicht diffbaren Stellen? Das geht doch gar nicht, oder stehe ich auf dem Schlauch?

Bezug
                        
Bezug
Ableitung von Beträgen: Fallunterscheidungen
Status: (Antwort) fertig Status 
Datum: 10:58 So 22.01.2006
Autor: Loddar

Hallo Geddie!


> Das heißt ich soll den |x| erst mal ohne die 0
> differenzieren?!!?

[ok] Und nicht nur die $0_$ außen vor lassen, sondern z.B. auch [mm] $x_0 [/mm] \ = \ [mm] \bruch{\pi}{2}$ [/mm] . Du musst hier eine Fallunterscheidung durchführen:

[mm] |x|=\begin{cases} -x, & \mbox{für } -\bruch{\pi}{2} \ \le \ x \ < \ 0 \mbox{} \\ +x, & \mbox{für } 0 \ \le x \ \le \ \bruch{3}{2}\pi \mbox{} \end{cases} [/mm]

[mm] |\cos(x)|=\begin{cases} +\cos(x), & \mbox{für } -\bruch{\pi}{2} \ \le \ x \ < \ \bruch{\pi}{2} \mbox{} \\ -\cos(x), & \mbox{für } +\bruch{\pi}{2} \ \le \ x \ \le \ \bruch{3}{2}\pi \mbox{} \end{cases} [/mm]


Damit ergibt sich folgende Funktionsvorschrift:

[mm] f(x):=|x|+|\cos(x)|=\begin{cases} -x+\cos(x), & \mbox{für } -\bruch{\pi}{2} \ \le \ x \ < \ 0 \mbox{} \\ x+\cos(x), & \mbox{für } 0 \ \le \ x < \ \bruch{\pi}{2} \mbox{}\\ x-\cos(x), & \mbox{für } \bruch{\pi}{2} \ \le \ x \ \le \ \bruch{3}{2}\pi \mbox{} \end{cases} [/mm]




> Aber was meinst du mit Bestimmen der
> Maxima an nicht diffbaren Stellen?

Hier musst Du an den entsprechenden Nahtstellen bzw. den Rändern Grenzwertbetrachtungen durchführen, ob hier Maxima oder Minima vorliegen. Denn an diesen Nahtstellen und Rändern haben die entsprechenden Extrema unter Umständen keine horizontale Tangente.

[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]