www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Umformungen von X
Status: (Frage) beantwortet Status 
Datum: 16:15 So 21.05.2006
Autor: MikeZZ

Aufgabe
Bilde die Ableitung von Wurzel X und einem Bruch mit X als Zähler und eine weitere mit X als Nenner

Hi Leute,

könnt ihr mir sagen wie ich die Gleichungen umformen muss um die erste Ableitung z.B. zu bestimmen? Also wenn X unter der Wurzel steht oder in einem Bruch vorhanden ist. Bin für jedwige antwort sehr dankbar.

Liebe Grüsse
Mike

        
Bezug
Ableitungen: Antwort u. Lösung
Status: (Antwort) fertig Status 
Datum: 16:43 So 21.05.2006
Autor: lauravr

Hey Mike.

In der ersten Funktion, soll das x unter der Wurzel stehen. Also
f(x) = [mm] \wurzel{x} [/mm] .
Damit wir hier von besser die Ableitung bilden können, formen wir es in
f(x) = [mm] x^{\bruch{1}{2}} [/mm]
um.
Wenn wir diese Funktion jetzt nach dem Schema f'(x) = n [mm] \* x^{n-1} [/mm] ableiten, erhalten wir
f'(x) = [mm] \bruch{1}{2} x^{\bruch{-1}{2}} [/mm] .
Das kann wiederum zu
f'(x) = [mm] \bruch{1}{2\wurzel{x}} [/mm]
umgeformt werden.


X soll bei einer Funktion im Zähler sein. Nehmen wir einfach
f(x) = [mm] \bruch{x}{2} [/mm] = [mm] \bruch{1}{2} [/mm] x .
Wenn wir diese Funktion jetzt wieder nach dem Schema f'(x) = n [mm] \* x^{n-1} [/mm] ableiten, erhalten wir
f'(x) = [mm] \bruch{1}{2} [/mm] .


X soll bei einer Funktion im Nenner sein. Nehmen wir
f(x) = [mm] \bruch{1}{x} [/mm] = [mm] x^{-1} [/mm] .
Nach dem üblichen Schema abgeleitet ergibt dies
f'(x) = - [mm] \bruch{1}{x^{2}} [/mm] .


Ich hoffe das war verständlich. Hast du noch Fragen?

Bezug
        
Bezug
Ableitungen: weitere Beispiele
Status: (Frage) beantwortet Status 
Datum: 19:00 So 21.05.2006
Autor: MikeZZ

Aufgabe
Vielen Dank

Danke, ich habe diesen Teil nun verstanden. Wie sieht es aus wenn es komplizierter wird? Könntest du das Verfahren noch einmal an folgenden Funktionen wiederholen?

[mm] \bruch{2- x^{3}-3 x^{4}+ x^{5}}{ x^{2}} [/mm]

[mm] \bruch{2 \* \wurzel{ x^{5}}-3}{ \wurzel{x}} [/mm]

-3 [mm] \* x^{4}+ \bruch{1}{x} \* x^{3}-1 [/mm]

[mm] \bruch{4 \* x^{2}-5}{ x^{2}} [/mm]

[mm] \bruch{7}{ \wurzel{x}}+ \bruch{7}{ x^{2}} [/mm]

Vielen vielen Dank und Liebe Grüsse
Mike

Bezug
                
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 So 21.05.2006
Autor: M.Rex

Hallo,

Diese Funktionen abzuleiten, ist ohne weiteres nicht möglich. Für solche Terme gibt es die Produktregel, die Quotientenregel, oder , für besonders "schwere Fälle" die Kettenregel. Ich denke, die werdet ihr noch im Unterricht behandeln.

Ich hoffe, ich habe dich jetzt ncit allzusehr geschockt...

Marius

Bezug
                
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Mo 22.05.2006
Autor: Sigrid

Hallo Mike,

> Vielen Dank
>  Danke, ich habe diesen Teil nun verstanden. Wie sieht es
> aus wenn es komplizierter wird? Könntest du das Verfahren
> noch einmal an folgenden Funktionen wiederholen?
>  
> [mm]\bruch{2- x^{3}-3 x^{4}+ x^{5}}{ x^{2}}[/mm]

Forme deinen Bruch erst einmal um:

$ f(x) = [mm] \bruch{2- x^{3}-3 x^{4}+ x^{5}}{ x^{2}} [/mm] $

$ = [mm] \bruch{2}{x^2} [/mm] - x - [mm] 3x^2 [/mm] + [mm] x^3 [/mm] $

$ = [mm] 2x^{-2}- [/mm] x - [mm] 3x^2 [/mm] + [mm] x^3 [/mm] $



>  
> [mm]\bruch{2 \* \wurzel{ x^{5}}-3}{ \wurzel{x}}[/mm]

$ = 2 [mm] x^2 [/mm] - [mm] \bruch{3}{ \wurzel{x}} [/mm] $

$ = 2 [mm] x^2 [/mm] - 3 [mm] x^{-\bruch{1}{2}} [/mm] $



>  
> -3 [mm]\* x^{4}+ \bruch{1}{x} \* x^{3}-1[/mm]

$ = - 3 [mm] x^4 [/mm] + [mm] x^2 [/mm] - 1 $



>  
> [mm]\bruch{4 \* x^{2}-5}{ x^{2}}[/mm]

Überlasse ich jetzt dir.

>  
> [mm]\bruch{7}{ \wurzel{x}}+ \bruch{7}{ x^{2}}[/mm]

Wenn du obige Umformungen und die Lösungswege, die Laura dir gegeben hat, verstanden hast, schaffst du den Rest alleine. Versuch's mal und melde dich, wenn du noch Fragen hast.

Gruß
Sigrid

>  
> Vielen vielen Dank und Liebe Grüsse
>   Mike

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]