www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Ableitungen
Ableitungen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 26.09.2007
Autor: Sternchen0707

x³ / (x+2)²

Also man muss das ja dann nach der Quotientenregel ableiten... Das verstehe ich auch

3x² (x+2)² - (x³) (2x+4) / (x+2) ^4

So... jetzt weiß ich auch nicht weiter.
Wie soll ich mit dem Term (x+2)² umgehen? kann ich den durch den nenner einfach teilen?

Wäre lieb wenn mir jemand die ganze ableitung mal vorrechnen könnte. Danke

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 26.09.2007
Autor: Kroni

Hi,

ja, die Quotientenregel zuerst anweden. Also so:

[mm] $f(x)=\frac{x^3}{(x+2)^2}$ [/mm]

[mm] $f'(x)=\frac{3x^2\*(x+2)^2-2(x+2)\*x^3}{(x+2)^4}$ [/mm]

Das ist alles.

> x³ / (x+2)²
>  
> Also man muss das ja dann nach der Quotientenregel
> ableiten... Das verstehe ich auch
>
> 3x² (x+2)² - (x³) (2x+4) / (x+2) ^4
>  
> So... jetzt weiß ich auch nicht weiter.
>  Wie soll ich mit dem Term (x+2)² umgehen? kann ich den
> durch den nenner einfach teilen?

Jein. Wenn du erst die Summe auseinanderziehst dann ja. Aber wenn du einfach kürzen würdest, ddann müsstest du auch den zweiten Summanden [mm] $-x^3(2x+4)$ [/mm] durch [mm] $(x+2)^2$ [/mm] teilen, da sbringt dir also nicht sonderlich viel.

>
> Wäre lieb wenn mir jemand die ganze ableitung mal
> vorrechnen könnte. Danke  

LG

Kroni


Bezug
        
Bezug
Ableitungen: kürzen
Status: (Antwort) fertig Status 
Datum: 15:51 Mi 26.09.2007
Autor: Roadrunner

Hallo Sternchen!


Wenn Du hier die Ableitung aufschreibst wie oben mit
$$f'(x) \ = \ [mm] \bruch{3x^2*\blue{(x+2)}^2-x^3*2*\blue{(x+2)}}{(x+2)^4}$$ [/mm]
kannst Du im Zähler den Term [mm] $(x+2)^1 [/mm] \ = \ (x+2)$ ausklammern und kürzen.

Anschließend dann im Zähler ausmultiplizieren und zusammenfassen ...


Gruß vom
Roadrunner


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 26.09.2007
Autor: Sternchen0707

gut, also das habe ich schonmal verstanden... Danke

Jetzt habe ich noch eine aufgabe, bei der ich nicht so richtig weiter komme:

x / (x+4) (x-0,5)

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 26.09.2007
Autor: crashby

Hey Sternchen :)

Meinst du das hier?

[mm]f(x)=\frac{x}{ (x+4) *(x-0,5)}[/mm]

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Mi 26.09.2007
Autor: Sternchen0707

ja

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mi 26.09.2007
Autor: crashby

Hey,

hier kannst du wieder Qoutientenregel anwenden nachdem du den Nenner ausmultipliziert hast.

[mm]f(x)=\frac{x}{(x^2+\frac{7}{2}*x-2)}[/mm]

[mm]u=x[/mm]
[mm]v=x^2+\frac{7}{2}*x-2[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]