Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 14:49 Fr 05.02.2010 | Autor: | RWBK |
Aufgabe | Ermitteln Sie die ersten beiden Ableitungen?
f(x) = x/e^3x+1
f(x) = 1/x-1ln(x+1) |
Kann mir dabei vllt jemand helfen eigentlich kann ich das Ableiten jetzt aber die beiden Aufgaben, ich weiß nicht da komme ich nie auf das richtige Ergebniss! Am besten wäre es für mich es würde einer vormachen aber wenn mir das einer gut erklären kann wäre auch nicht schlecht dann würde ich es noch mal selbst probieren . Ich bin mir ehrlich gesagt auch gar nicht so sicher bei den Aufgaben wie ich richtig Anfangen soll.
RWBK
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:58 Fr 05.02.2010 | Autor: | fred97 |
> Ermitteln Sie die ersten beiden Ableitungen?
> f(x) = x/e^3x+1
Das kann ich vielleicht noch entziffern: $f(x) = [mm] \bruch{x}{e^{3x}+1}$ [/mm] oder heißt es $f(x) = [mm] \bruch{x}{e^{3x+1}}$
[/mm]
> f(x) = 1/x-1ln(x+1)
Das kann ich nicht entziffern. Schreib das mal lesbar auf
Mir scheint, als bräuchtest Du bei beiden Aufgaben die Quotientenregel (und auch die Kettenregel)
Kennst Du diese ?
FRED
> Kann mir dabei vllt jemand helfen eigentlich kann ich das
> Ableiten jetzt aber die beiden Aufgaben, ich weiß nicht da
> komme ich nie auf das richtige Ergebniss! Am besten wäre
> es für mich es würde einer vormachen aber wenn mir das
> einer gut erklären kann wäre auch nicht schlecht dann
> würde ich es noch mal selbst probieren . Ich bin mir
> ehrlich gesagt auch gar nicht so sicher bei den Aufgaben
> wie ich richtig Anfangen soll.
>
> RWBK
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 11:35 So 07.02.2010 | Autor: | RWBK |
Aufgabe | Die ersten beiden Ableitungen bilden:
f(x)=ln(4+2x)²
f(x)= 1/ (Bruchstrich) 1+x lnx (lnx steht nicht unter dem Bruchstrich sondern dahinter)
|
Ich hab versucht beide Aufgaben mit Kettenregel zu lösen das war aber leider nicht gerade erfolgreich.
RWBK
|
|
|
|
|
> Die ersten beiden Ableitungen bilden:
> f(x)=ln(4+2x)²
> f(x)= 1/ (Bruchstrich) 1+x lnx (lnx steht nicht unter dem
> Bruchstrich sondern dahinter)
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> Ich hab versucht beide Aufgaben mit Kettenregel zu lösen
> das war aber leider nicht gerade erfolgreich.
>
>
> RWBK
>
>
Hallo,
bitte gibt Dir Mühe mit der äußeren Form Deines Posts. Das, was Du schreibst, ist (wie bereits angemerkt) weder besonders leserlich noch eindeutig.
Beachte bitte die Eingabehilfen für die Formeleingabe, die Du unterhalb des Eingabefensters findest.
Meinst Du bei b) diese Funktion: [mm] f(x)=\bruch{1}{1+x}+\ln(x) [/mm] ?
Ohne daß Du uns zeigst, was Du gerechnet hast, können wir Dir nur schlecht helfen.
Laß uns bei Deiner Erfolglosigkeit zuschauen, poste also Deine Lösungsversuche.
Gruß v. Angela
|
|
|
|