Ableitungsregeln < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | [mm] f(x)=\wurzel{2x}+\bruch{1}{tx} [/mm] ; [mm] f(x)=\bruch{1}{2k}x^{8k}-8x^{-8k}; \bruch{x}{x} [/mm] |
Hallo,
mein problem liegt darin diese beiden Funktionen abzuleiten.
Bei der ersten Funktion weiss ich nicht was mit der 2 unter der Wurzel geschehen muss und bei der anderen Funktionen bin ich voll aus dem Konzept da weiss ich schonma garnicht womit ich anfangen soll oder was ich machen soll und bei der dritten weiss ich nicht ob man das überhaupt ableiten kann mein bruder sagt mir x/x ist 1 aber ich denk mir mann kann das ableiten indem man das x vom zähler runterholt und dann hat man [mm] xx^{-1} [/mm] aber wenn da dann x*x steht wird daraus [mm] x^2?
[/mm]
Deswegen fänd ich es nett wenn sie mir eben helfen könnten und diese beiden Funktionen und dem [mm] \bruch{x}{x} [/mm] mit bischen erklären ableiten könnten.
|
|
|
|
Hallo
> [mm]f(x)=\wurzel{2x}+\bruch{1}{tx}[/mm] ;
> [mm]f(x)=\bruch{1}{2k}x^{8k}-8x^{-8k}; \bruch{x}{x}[/mm]
> Hallo,
> mein problem liegt darin diese beiden Funktionen
> abzuleiten.
> Bei der ersten Funktion weiss ich nicht was mit der 2
> unter der Wurzel geschehen muss und bei der anderen
> Funktionen bin ich voll aus dem Konzept da weiss ich
> schonma garnicht womit ich anfangen soll oder was ich
> machen soll und bei der dritten weiss ich nicht ob man das
> überhaupt ableiten kann mein bruder sagt mir x/x ist 1
> aber ich denk mir mann kann das ableiten indem man das x
> vom zähler runterholt und dann hat man [mm]xx^{-1}[/mm] aber wenn
> da dann x*x steht wird daraus [mm]x^2?[/mm]
> Deswegen fänd ich es nett wenn sie mir eben helfen
> könnten und diese beiden Funktionen und dem [mm]\bruch{x}{x}[/mm]
> mit bischen erklären ableiten könnten.
1) f(x) = [mm] \wurzel{2x} [/mm] + [mm] \bruch{1}{tx}
[/mm]
Beachte hier, dass [mm] \wurzel{2x} [/mm] = [mm] \wurzel{2}\wurzel{x}, [/mm] und [mm] \bruch{1}{tx} [/mm] = [mm] \bruch{1}{t}*x^{-1}. [/mm] So sollte es eigentlich gehen..
2) f(x) = [mm] \bruch{1}{2k}x^{8k}-8x^{-8k}
[/mm]
Lass dich hier von den k's nicht irritieren.. du sollst diese Funktion ganz normal nach x ableiten.. wo liegt dein Problem genau?
3) f(x) = [mm] \bruch{x}{x}
[/mm]
Das lässt sich schon ableiten.. Wenn du das folgendermassen schreibst, wie du es woltlest, also [mm] x*x^{-1} [/mm] musst du beachten, dass [mm] x*x^{-1} \not= x^{2}, [/mm] sondern [mm] x*x^{-1} [/mm] = [mm] x^{1-1} [/mm] = [mm] x^{0} [/mm] = 1 (Potenzgesetze). Und somit, abgeleitet nach x gibt das f'(x) = 0.
Ich hoffe, du kommst weiter.. sonst, einfach deine Rechenschritte posten und wie analysieren die Schwierigkeiten zusammen :)
Grüsse, Amaro
|
|
|
|