www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Absolute Kondition
Absolute Kondition < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Absolute Kondition: Tipp
Status: (Frage) überfällig Status 
Datum: 12:04 Mi 05.12.2007
Autor: Engel-auf-Wolke

Aufgabe
(a)
Zeigen sie, dass für die absolute Kondition der Funktion f = g+h die Abschätzung
[mm] k_{abs}(f,x) \le k_{abs}(h,x) [/mm] + [mm] k_{abs}(g,x) [/mm] gilt.

(b)
Verwenden Sie dieses Resultat, um die absolute und die relative Kondition der Auswertung von f(x) = [mm] x^{5} [/mm] + [mm] |x^{3}| [/mm] abzuschätzen.

(c)
Berechnen Sie zudem die absolute und die relative Kondition der Auswertung von f(x) = [mm] sin^{2}(x) [/mm] + [mm] cos^{2}(x) [/mm] in x=0.  

Also ich habe mich mal mit diesen Aufgaben beschäftigt und würde mich freuen, wenn sich jemand einmal meine Ergebnisse anschauen kann. Oder mir im Fall von (b) einen Tipp geben könnte.

(a)
f(x) = g(x) + h(x)
1. Fall
g, h diff´bar, dann [mm] k_{abs} [/mm] = | f´(x) |
[mm] \Rightarrow k_{abs}(f,x) [/mm] = | f´(x) | = | g´(x) + h´(x) | [mm] \le [/mm] | g´(x) | + | h´(x) | = [mm] k_{abs}(g,x) [/mm] + [mm] k_{abs}(h,x) [/mm]

2.Fall
g,h nicht diff´bar, dann | [mm] f(x_{0})-f(x) [/mm] | [mm] \le k_{abs}|x_{0}-x| [/mm] + [mm] \landau(|x_{0}-x|) [/mm]
[mm] \Rightarrow |f(x_{0})-f(x)| \le k_{abs}(g,x_{0}) [/mm] - [mm] \landau(|x_{0}-x|) [/mm] + [mm] k_{abs}(h,x_{0}) [/mm] - [mm] \landau(|x_{0}-x|) \le k_{abs}(g,x_{0}) [/mm] + [mm] k_{abs}(h,x_{0}) [/mm] - 2 [mm] \landau(|x_{0}-x|) [/mm]

(b)
Da hab ich nicht so den richtigen Ansatz gefunden. Ich weiß das ich abschätzen soll, ab das war noch die mein Ding.

f(x) = g(x) + h(x)
f(x) = [mm] x^{5} [/mm] + [mm] |x^{3}| [/mm]
g,h diff´bar
Also wende ich den 1.Fall aus (a) an.
[mm] k_{abs}(f,x) [/mm] = | f´(x) | [mm] \le [/mm] |g´(x)| + |h´(x)|
1. Fall
[mm] k_{abs}(f,x) \le |5x^{4}| [/mm] + [mm] 3x^{2} [/mm]
2. Fall
[mm] k_{abs}(f,x) \le |5x^{4}| [/mm] - [mm] 3x^{2} [/mm]
Und nun? Vielleicht ist das ja auch schon falsch.

(c)
Hier habe ich auch gerechnet. Glaube aber nicht das mein berechnetes Ergebnis für die absolute Kondition so richtig ist.

f(x) = [mm] sin^{2}(x) [/mm] + [mm] cos^{2}(x) [/mm] in x=0
h(x) = [mm] sin^{2}(x) [/mm] mit [mm] h_{1}=x^{2} [/mm] und [mm] h_{2}=sin [/mm]
g(x) = [mm] cos^{2}(x) [/mm] mit [mm] g_{1}=x^{2} [/mm] und [mm] g_{2}=cos [/mm]

[mm] k_{abs}(h,x) [/mm] = | h´(x) | = [mm] |h_{1}(h_{2}(x))´||h_{2}(x)´| [/mm] = |2sin(x)||cos(x)| = |2*0||1| = 0
[mm] k_{abs}(g,x) [/mm] = | g´(x) | = [mm] |g_{1}(g_{2}(x))´||g_{2}(x)´| [/mm] = |2cos(x)||-sin(x)| = |2*1||0| = 0

Ich hab hier mit den entsprechenden Ableitungen gerechnet. Leider kann ich die entsprechenden stellen nicht visuell darstellen.

[mm] \Rightarrow k_{abs}(f,x) \le [/mm] 0

Würde mich über hilfreiche Tipps und Vorschläge freuen.
Danke!
Stephanie

        
Bezug
Absolute Kondition: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 Sa 08.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]