Absolute Stetigkeit < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:25 Sa 15.05.2010 | Autor: | dazivo |
Aufgabe | Gegeben seien zwei reguläre Radonmasse [mm] $\mu$ [/mm] und [mm] $\lambda$ [/mm] auf der Borelschen [mm] $\sigma$-Algebra $\mathbb{B}(\mathbb{R}^n)$ [/mm] mit der Eigenschaft:
$$
[mm] \forall [/mm] f [mm] \in C_{c}(\mathbb{R}^n) \enspace [/mm] f [mm] \geq [/mm] 0: [mm] \int_{\mathbb{R}^n} [/mm] f [mm] d\mu [/mm] = 0 [mm] \enspace \Rightarrow \enspace \int_{\mathbb{R}^n} [/mm] f [mm] d\lambda [/mm] = 0
$$
Die Behauptung ist, dass [mm] $\lambda \ll \mu$. [/mm] |
Hallo zusammen!!
Ich bin seit längerem an dieser Behauptung dran und komme einfach nicht weiter. Es ist mir klar, dass absolute Stetigkeit zweier masse äquivalent ist mit der obigen Aussage, mit dem Unterschied, dass "messbar mit kompaktem support" statt [mm] $C_c(\mathbb{R}^n)$ [/mm] stehen sollte. Nun wollte ich die Dichtheit mit ins Spiel bringen, und konnte dabei feststellen, dass ich eigentlich nur noch
$$
[mm] \forall \varepsilon [/mm] > 0 [mm] \enspace \exists \delta [/mm] > 0: [mm] \enspace \int_{\mathbb{R}^n} [/mm] f [mm] d\mu [/mm] < [mm] \delta \enspace \Rightarrow \enspace \int_{\mathbb{R}^n} [/mm] f [mm] d\lambda [/mm] < [mm] \varepsilon
[/mm]
$$
brauche. Und hier komme ich einfach nicht weiter.
Könnte mir jemand einen Hinweis geben, wie ich das beweisen könnte oder vielleicht mitteilen, dass ich völlig auf dem Holzweg bin.
Ich bedanke mich schon im Voraus.
Gruss dazivo
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 08:48 Sa 15.05.2010 | Autor: | gfm |
> Ich bin seit längerem an dieser Behauptung dran und komme
> einfach nicht weiter. Es ist mir klar, dass absolute
> Stetigkeit zweier masse äquivalent ist mit der obigen
> Aussage, mit dem Unterschied, dass "messbar mit kompaktem
> support" statt [mm]C_c(\mathbb{R}^n)[/mm] stehen sollte. Nun wollte
Also in Maß- und Integrationstheorie, in Heinz Bauer, 1990, S. 192, wird [mm]C_c(E)[/mm] für die [mm] f\in [/mm] C(E) (stetige Funktionen) mit kompaktem Support auf einem topologischen Raum E eingeführt.
LG
gfm
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:31 Sa 15.05.2010 | Autor: | dazivo |
Hallo gfm!
Mir sind die Definitionen der einzelnen Objekte in der Behauptung bekannt. Mein Problem besteht darin die Behauptung zu beweisen. Ich habe mir einige Mass-und Integrationstheorie Bücher angesehen (unter anderen auch das von Heinz Bauer), dennoch bin ich nicht schlauer geworden.
Gruss dazivo
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:11 Mo 17.05.2010 | Autor: | gfm |
> Hallo gfm!
>
> Mir sind die Definitionen der einzelnen Objekte in der
> Behauptung bekannt. Mein Problem besteht darin die
> Behauptung zu beweisen. Ich habe mir einige Mass-und
> Integrationstheorie Bücher angesehen (unter anderen auch
> das von Heinz Bauer), dennoch bin ich nicht schlauer
> geworden.
>
Ein Schuss ins Blaue:
Der Satz von Radon-Nikodym so wie im Bauer benutzt (nur) Meßbarkeit, weil die Maße auf einer allg. [mm]\sigma[/mm]-Algebra gegeben sind.
Bei Radon-Maßen ist die [mm]\sigma[/mm]-Algebra durch die Topologie erzeugt. Dadurch der Brückenschlag zu Stetigkeit.
Schau vielleicht mal in den Elstrodt.
LG
gfm
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:32 Di 18.05.2010 | Autor: | fred97 |
> Gegeben seien zwei reguläre Radonmasse [mm]\mu[/mm] und [mm]\lambda[/mm] auf
> der Borelschen [mm]\sigma[/mm]-Algebra [mm]\mathbb{B}(\mathbb{R}^n)[/mm] mit
> der Eigenschaft:
> [mm][/mm]
> [mm]\forall[/mm] f [mm]\in C_{c}(\mathbb{R}^n) \enspace[/mm] f [mm]\geq[/mm] 0:
> [mm]\int_{\mathbb{R}^n}[/mm] f [mm]d\mu[/mm] = 0 [mm]\enspace \Rightarrow \enspace \int_{\mathbb{R}^n}[/mm]
> f [mm]d\lambda[/mm] = 0
> [mm][/mm]
> Die Behauptung ist, dass [mm]\lambda \ll \mu[/mm].
> Hallo
> zusammen!!
>
> Ich bin seit längerem an dieser Behauptung dran und komme
> einfach nicht weiter. Es ist mir klar, dass absolute
> Stetigkeit zweier masse äquivalent ist mit der obigen
> Aussage, mit dem Unterschied, dass "messbar mit kompaktem
> support" statt [mm]C_c(\mathbb{R}^n)[/mm] stehen sollte. Nun wollte
> ich die Dichtheit mit ins Spiel bringen, und konnte dabei
> feststellen, dass ich eigentlich nur noch
> [mm][/mm]
> [mm]\forall \varepsilon[/mm] > 0 [mm]\enspace \exists \delta[/mm] > 0:
> [mm]\enspace \int_{\mathbb{R}^n}[/mm] f [mm]d\mu[/mm] < [mm]\delta \enspace \Rightarrow \enspace \int_{\mathbb{R}^n}[/mm]
> f [mm]d\lambda[/mm] < [mm]\varepsilon[/mm]
> [mm][/mm]
> brauche. Und hier komme ich einfach nicht weiter.
> Könnte mir jemand einen Hinweis geben, wie ich das
> beweisen könnte oder vielleicht mitteilen, dass ich
> völlig auf dem Holzweg bin.
Möglicherweise.
Voraussetzung ist hier:
$ [mm] \forall [/mm] $ f $ [mm] \in C_{c}(\mathbb{R}^n) \enspace [/mm] , $ f $ [mm] \geq [/mm] $ 0: $ [mm] \int_{\mathbb{R}^n} [/mm] $ f $ [mm] d\mu [/mm] $ = 0 $ [mm] \enspace \Rightarrow \enspace \int_{\mathbb{R}^n} [/mm] $ f $ [mm] d\lambda [/mm] $ = 0
Zeigen sollst Du:
$ [mm] \forall [/mm] A [mm] \in \mathbb{B}(\mathbb{R}^n) [/mm] : [mm] \lambda(A) [/mm] =0 [mm] \Rightarrow \mu(A)=0$
[/mm]
FRED
> Ich bedanke mich schon im Voraus.
>
> Gruss dazivo
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:11 Mi 19.05.2010 | Autor: | dazivo |
Hallo zusammen!
Danke für eure Hilfe.
Grüsse dazivo
|
|
|
|