www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand windschiefer Geraden
Abstand windschiefer Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand windschiefer Geraden: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 02:33 Di 14.12.2010
Autor: Ersty

Aufgabe
gegeben sind 2 Geradengleichungen:
g: [mm] \vec{x} [/mm] = [mm] \vektor{0 \\ 4 \\ 2} [/mm] + [mm] r\vektor{200 \\ -100 \\ 0} [/mm]
h: [mm] \vec{x} [/mm] = [mm] \vektor{3 \\ 0 \\ 3} [/mm] + [mm] s\vektor{0 \\ 500 \\ -100} [/mm]

und deren Abstand d = 0,48795

Bestimme die Koordinaten der Punkte P und Q. (Die Strecke PQ ist ja senkrecht zu beiden windschiefen Geraden und ist die kürzeste Verbindung. P liegt auf g oder h, Q dann auf der entsprechend anderen Geraden)

Hi, diese Frage habe ich in keinem anderen Forum gestellt.

Ich habe diese Aufgabe von meiner Nachhilfeschülerin gestellt bekommen und konnte sie nicht lösen...
Ich weiß grob, wie man den Abstand berechnet, ich habe aber ein Brett vorm Kopf, wie man bitte mit gegebenen Abstand d (siehe oben), die Punkte P und Q bestimmen soll.
Ich weiß der Abstand d ist die Länge der Geraden [mm] \overrightarrow{PQ}, [/mm] aber wie finde ich den Vektor dieser Geraden. Hilft mir das überhaupt? Macht man dies mittels des Normalenvektors zu g und h, und wandelt den in den Normaleneinheitsvektor um, (warum auch immer?)?
Denn der Normalenvektor steht ja senkrecht auf den Richtungsvektoren von g und h.
Hilft mir das bei der Aufgabe?
Habe ich damit dann wirklich [mm] \overrightarrow{PQ}? [/mm] Ich bin sehr skeptisch, da ich kaum Ahnung von diesem (für mich) "Randgebiet der Algebra" habe.

Könnt ihr mir in meinem Gedanken-Chaos helfen?

Ich danke euch jetzt schon!
Eine besinnliche Weihnachtszeit!

MFG Ersty

        
Bezug
Abstand windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 07:02 Di 14.12.2010
Autor: weightgainer

Hallo,

ist das nicht ein einfach ein netter Versuch, die Abstandsberechnung in eine andere Formulierung zu packen?
Wenn ich das richtig im Kopf habe, werden doch genau diese beiden Punkte benutzt, um den Abstand zu berechnen, d.h. der letzte Schritt ist doch so etwas wie "Berechne den Abstand der beiden herausgefundenen Punkte". Und die beiden Punkte müssten es ja dann sein...
Mein Vorschlag: Einfach Abstand berechnen, Punkte merken, Kontrollergebnis ist auch noch vorgegeben.

lg weightgainer

Bezug
        
Bezug
Abstand windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 07:39 Di 14.12.2010
Autor: angela.h.b.


> gegeben sind 2 Geradengleichungen:
>  g: [mm]\vec{x}[/mm] = [mm]\vektor{0 \\ 4 \\ 2}[/mm] + [mm]r\vektor{200 \\ -100 \\ 0}[/mm]
>  
> h: [mm]\vec{x}[/mm] = [mm]\vektor{3 \\ 0 \\ 3}[/mm] + [mm]s\vektor{0 \\ 500 \\ -100}[/mm]
>  
> und deren Abstand d = 0,48795
>  
> Bestimme die Koordinaten der Punkte P und Q. (Die Strecke
> PQ ist ja senkrecht zu beiden windschiefen Geraden und ist
> die kürzeste Verbindung. P liegt auf g oder h, Q dann auf
> der entsprechend anderen Geraden)


Hallo,

was man tun soll, steht ja doch recht genau geschrieben, wenn man das, was in Klammern steht, beachtet:

Sei [mm] \vec{n_0} [/mm] der Einheitsvektor, der senkrecht auf den beiden Geraden steht.

Erkenntnis 1: es ist [mm] \overrightarrow{PQ}=d*\vec{n_0} [/mm] oder [mm] \overrightarrow{PQ}=-d*\vec{n_0}. [/mm]

Erkenntnis 2: es liegt P auf g und Q auf h, also gibt es r,s mit

[mm] \overrightarrow{0P}=$\vektor{0 \\ 4 \\ 2}$ [/mm] + [mm] $r\vektor{200 \\ -100 \\ 0}$ [/mm]
[mm] \overrightarrow{0Q}=$\vektor{3 \\ 0 \\ 3}$ [/mm] + [mm] $s\vektor{0 \\ 500 \\ -100}$ [/mm]

Erkenntnis 3: Also weiß man etwas über [mm] \overrightarrow{PQ}, [/mm] und zusammen mit Erkenntnis 1 erhält man

Erkenntnis 4: ein LGS mit zwei Variablen.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]