www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Addition von Untervektorräumen
Addition von Untervektorräumen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Addition von Untervektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Mo 07.06.2004
Autor: Frosty

Hallo,
wir hatte in der Vorlesung, dass [mm]U+U \subseteq U[/mm] (U ist Untervektorraum). Jetzt wollte ich fragen ob [mm]U+U' \subseteq U \cap U'[/mm] (U, U' sind Untervektorräume) gilt, weil wir das noch nicht richtig besprochen hatten, aber immer mit U+U' rechnen müssen?
Bernhard

        
Bezug
Addition von Untervektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Mo 07.06.2004
Autor: Julius

Hallo Bernhard!

>  wir hatte in der Vorlesung, dass [mm]U+U \subseteq U[/mm] (U ist
> Untervektorraum). Jetzt wollte ich fragen ob [mm]U+U' \subseteq U \cap U'[/mm]
> (U, U' sind Untervektorräume) gilt,

Nein, offenbar nicht.

Es sei

[mm] $V=\IR^2$, [/mm]
[mm] $U=Span(e_1)$, [/mm]
[mm] $U'=Span(e_2)$. [/mm]

Dann gilt:

$U+U'=V [mm] \not\subseteq \{0\} [/mm] = U [mm] \cap [/mm] U'$.

Die Umkehrung ist aber richtig: Es gilt:

$U [mm] \cap [/mm] U' [mm] \subseteq [/mm] U+U'$.

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]