www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Additionstheorem Binominreihen
Additionstheorem Binominreihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheorem Binominreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Fr 24.07.2009
Autor: ANTONIO

Aufgabe
Für alle s,t [mm] \in \IC [/mm] und jedes z [mm] \in [/mm] E=Einheitskreisscheibe gilt: [mm] B_s(z) \cdot B_t(z) [/mm] = [mm] B_{s+t}(z). [/mm]  Folgerung: Für jeden Exponenten s [mm] \in \IQ [/mm] und jedes reelle x [mm] \in [/mm] (-1;1) ist [mm] B_s [/mm] (x) = [mm] (1+x)^s [/mm]

Guten Abend,
bei Königsberger Analysis 1 6.Aufl. wird das bewiesen. Müßte das nicht auch für -1 [mm] \le [/mm] x [mm] \le [/mm] 1 gelten? Das Additionstheorem der Binominalreihen gilt doch für z [mm] \in [/mm] der Einheitskreisscheibe.
Ich freue mich über jeden Hinweis.
Viele Grüße
Antonio
Ich habe die Frage in keinem anderen Forum gestellt.



        
Bezug
Additionstheorem Binominreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Fr 24.07.2009
Autor: ANTONIO

Hallo nochmal,
ich glaube ich habe gerade selbst die Antwort gefunden, machmal hilft es wohl schon die Frage zu formulieren und damit etwas Abstand zu gewinnen: Die allgemeinen Binominalkoeffizienten sind zumindest in meinem Kontext nur für ganze n definiert.
Grüße
Antonio

Bezug
                
Bezug
Additionstheorem Binominreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Fr 24.07.2009
Autor: ANTONIO

tut mir leid, das war wohl nix, es geht ja um x und nicht um n, also die Frage ist doch noch aktuell.


Bezug
        
Bezug
Additionstheorem Binominreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Fr 24.07.2009
Autor: rainerS

Hallo!

> Für alle s,t [mm]\in \IC[/mm] und jedes z [mm]\in[/mm]
> E=Einheitskreisscheibe gilt: [mm]B_s(z) \cdot B_t(z)[/mm] =
> [mm]B_{s+t}(z).[/mm]  Folgerung: Für jeden Exponenten s [mm]\in \IQ[/mm] und
> jedes reelle x [mm]\in[/mm] (-1;1) ist [mm]B_s[/mm] (x) = [mm](1+x)^s[/mm]
>  Guten Abend,
>  bei Königsberger Analysis 1 6.Aufl. wird das bewiesen.
> Müßte das nicht auch für -1 [mm]\le[/mm] x [mm]\le[/mm] 1 gelten? Das
> Additionstheorem der Binominalreihen gilt doch für z [mm]\in[/mm]
> der Einheitskreisscheibe.

Mit [mm] $B_s(z)$ [/mm] meinst du die binomische Reihe, nicht wahr?

Die konvergiert nicht für beliebige s auf dem Rand des Intervalls. Beispiel: s=-1.

Viele Grüße
   Rainer

Bezug
                
Bezug
Additionstheorem Binominreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:49 Fr 24.07.2009
Autor: ANTONIO

Danke für Deine Antwort.
>  
> > Für alle s,t [mm]\in \IC[/mm] und jedes z [mm]\in[/mm]
> > E=Einheitskreisscheibe gilt: [mm]B_s(z) \cdot B_t(z)[/mm] =
> > [mm]B_{s+t}(z).[/mm]  Folgerung: Für jeden Exponenten s [mm]\in \IQ[/mm] und
> > jedes reelle x [mm]\in[/mm] (-1;1) ist [mm]B_s[/mm] (x) = [mm](1+x)^s[/mm]
>  >  Guten Abend,
>  >  bei Königsberger Analysis 1 6.Aufl. wird das bewiesen.
> > Müßte das nicht auch für -1 [mm]\le[/mm] x [mm]\le[/mm] 1 gelten? Das
> > Additionstheorem der Binominalreihen gilt doch für z [mm]\in[/mm]
> > der Einheitskreisscheibe.
>  
> Mit [mm]B_s(z)[/mm] meinst du die binomische Reihe, nicht wahr?

ja

> Die konvergiert nicht für beliebige s auf dem Rand des
> Intervalls. Beispiel: s=-1.

ja. das finde ich erstaunlich. dann wäre das ein weiterer Fehler bei Königsberger. An anderer Stelle hat Königsberger die absolute Konvergenz der binomischen Reihe auch nur für [mm] \left| z \right| [/mm] < 1 gezeigt und nicht für = 1. Dann würde  das Additionstheorem der Binominalreihen ja nur für Werte für z innerhalb der Einheitskreisscheibe gelten und die oben zitierte Folgerung nur für -1 < x < 1. So viel Fehler in einem Standardwerk?

Viele Grüße
Antonio


Bezug
                        
Bezug
Additionstheorem Binominreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:28 Fr 24.07.2009
Autor: Arcesius

Hallo

Ich weiss nicht, ob ich deine Frage richtig verstehe, darum bitte auf "Teilweise beantwortet" stellen :)

> Danke für Deine Antwort.
>  >  
> > > Für alle s,t [mm]\in \IC[/mm] und jedes z [mm]\in[/mm]
> > > E=Einheitskreisscheibe gilt: [mm]B_s(z) \cdot B_t(z)[/mm] =
> > > [mm]B_{s+t}(z).[/mm]  Folgerung: Für jeden Exponenten s [mm]\in \IQ[/mm] und
> > > jedes reelle x [mm]\in[/mm] (-1;1) ist [mm]B_s[/mm] (x) = [mm](1+x)^s[/mm]

> Dann würde  das Additionstheorem der Binominalreihen ja
> nur für Werte für z innerhalb der Einheitskreisscheibe
> gelten und die oben zitierte Folgerung nur für -1 < x < 1.
> So viel Fehler in einem Standardwerk?
>  

Oben steht ja, "für jedes reelle x [mm] \in [/mm] (-1;1)...". Das ist ja das offene Intervall.. die Punkte -1 und +1 werden nicht angenommen.
Somit ist es ja richtig, dass die oben zitierte Folgerung nur für -1 < x < 1 gilt, nicht [mm] \le... [/mm]

Ist es das, was du meintest?

> Viele Grüße
>  Antonio
>  

Grüsse, Amaro

Bezug
                                
Bezug
Additionstheorem Binominreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:50 Sa 25.07.2009
Autor: ANTONIO

Hallo Amaro,
ja , danke für Deine Antwort. Jetzt hab ichs verstanden. Mir war das Zeichen [mm] \in [/mm] nicht für Intervalle geläufig und ich habe es verwechselt mit x [mm] \in [/mm] {-1, 1}. Ich muß mich auch bei Herrn Königsberger entschuldigen. Er spricht von der absoluten Konvergenz "in der Einheitskreisscheibe", das schließt wohl den Rand aus. Danke noch mal und
viele Grüße
Antonio

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]