Adj. primitiver Einheitswurzel < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:50 Mi 12.01.2011 | Autor: | Lippel |
Aufgabe | Sei $L = [mm] \IQ(\zeta)$ [/mm] mit [mm] $\zeta=e^{\frac{2\pi{i}}{17}} \in \IC$. [/mm] Zeigen Sie:
a) [mm] $G=Gal(L/\IQ)$ [/mm] ist zyklisch vom Grad 16: [mm] $\{e\} \leq H_1 \leq H_2 \leq H_3 \leq H_4 [/mm] =G$. wobei [mm] $ord\;H_i =2^i$ [/mm] gilt.
b) Wenn [mm] $H_i \leq [/mm] G$ eine Untergruzppe ist, gilt: [mm] $\summe_{\sigma \in H_i} \zeta^{\sigma} \in Fix(H_i)\backslash Fix(H_{i+1})$ [/mm] und [mm] $\summe_{\sigma \in H_i} \zeta^{\sigma}$ [/mm] ist Nullstelle eines Polynoms zweiten Grades mit Koeffizienten in [mm] $Fix(H_{i+1})$ [/mm] für $1 [mm] \leq [/mm] i [mm] \leq [/mm] 3$
c) Die iterierten quadratischen Erweiterungen liefern eine explizite Konstruktion des regulären Siebzehnecks. Führen Sie die Konstruktion durch. |
Hallo,
bevor ich mich an c) wage, müsste ich erstmal a) und b) verstehen.
a) [mm] $\zeta$ [/mm] ist Nullstelle des Polynoms [mm] $f:=X^{17}-1 \in \IQ[X]$. [/mm] L ist der Zerfällungskörper diese Polynoms, denn dessen Nullstellen [mm] $\{e^{\frac{2\pi{i}}{17}}, (e^{\frac{2\pi{i}}{17}})^2 = e^{\frac{4\pi{i}}{17}}, \ldots, (e^{\frac{2\pi{i}}{17}})^17 = 1\} [/mm] liegen alle in L.
[mm] $\zeta$ [/mm] ist primitive 17. Einheitswurzel [mm] $\Rightarrow Gal(L,\IQ) \cong (\IZ/17\IZ)^\times$
[/mm]
Da 17 prim ist, ist [mm] $\IZ/17\IZ$ [/mm] endlicher Körper [mm] $\Rightarrow (\IZ/17\IZ)^\times$ [/mm] ist zyklisch von der Ordnung 16, d.h G ist zyklisch [mm] $\Rightarrow \exists\:\tau \in [/mm] G: [mm] G=\{1,\ldots, \tau^15\}.
[/mm]
Damit existieren die Untergruppen:
[mm] $H_1 [/mm] = [mm] \{1,\tau^8\}, ord\:H_1=2$
[/mm]
[mm] $H_2 [/mm] = [mm] \{1, \tau^4, \tau^8, \tau^12\}, ord\:H_2 [/mm] =4$
[mm] $H_3 [/mm] = [mm] \{1, \tau^2, \ldots, \tau^14\}, ord\:H_3=8$
[/mm]
Ist das so erstmal richtig?
b)Um jetzt die Elemente der Untergruppen auf [mm] $\zeta$ [/mm] anwenden zu können, muss ich nun wissen, wie die Automorphismen der Galoisgruppe explizit aussehen. Dazu reicht es ja den Erzeuger zu kennen.
Ist [mm] $\sigma \in [/mm] G$, so muss [mm] $\sigma \; \IQ$ [/mm] elementweise festlassen. Außerdem permutiert [mm] $\sigma$ [/mm] die Nullstellen von f, wobei eine Nullstelle, nämlich 1, fest bleiben muss.
Da $(1, [mm] \zeta, \zeta^2, \ldots, \zeta^{16})$ [/mm] eine Basis des [mm] $\IQ$-VR [/mm] L ist, ist [mm] $\sigma$ [/mm] durch das Bild von [mm] $\zeta$ [/mm] eindeutig festgelegt.
Ich würde vermuten, dass [mm] $tau:\zeta \mapsto \zeta^2$ [/mm] ein Erzeuger der Galoisgruppe ist, das kann jedoch nicht sein, weil dann wäre bereits [mm] $\tau^8 [/mm] = id$, da [mm] $2^8 \: [/mm] mod [mm] \: [/mm] 17 =1$. Wie kann ich rausfinden, wie ein Erzeuger von G aussieht?
Freue mich über jede Antwort, vielen Dank im Voraus!
LG Lippel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:03 Mi 12.01.2011 | Autor: | felixf |
Moin Lippel,
> Sei [mm]L = \IQ(\zeta)[/mm] mit [mm]\zeta=e^{\frac{2\pi{i}}{17}} \in \IC[/mm].
> Zeigen Sie:
> a) [mm]G=Gal(L/\IQ)[/mm] ist zyklisch vom Grad 16: [mm]\{e\} \leq H_1 \leq H_2 \leq H_3 \leq H_4 =G[/mm].
> wobei [mm]ord\;H_i =2^i[/mm] gilt.
> b) Wenn [mm]H_i \leq G[/mm] eine Untergruzppe ist, gilt:
> [mm]\summe_{\sigma \in H_i} \zeta^{\sigma} \in Fix(H_i)\backslash Fix(H_{i+1})[/mm]
> und [mm]\summe_{\sigma \in H_i} \zeta^{\sigma}[/mm] ist Nullstelle
> eines Polynoms zweiten Grades mit Koeffizienten in
> [mm]Fix(H_{i+1})[/mm] für [mm]1 \leq i \leq 3[/mm]
> c) Die iterierten
> quadratischen Erweiterungen liefern eine explizite
> Konstruktion des regulären Siebzehnecks. Führen Sie die
> Konstruktion durch.
>
> bevor ich mich an c) wage, müsste ich erstmal a) und b)
> verstehen.
>
> a) [mm]$\zeta$[/mm] ist Nullstelle des Polynoms [mm]$f:=X^{17}-1 \in \IQ[X]$.[/mm]
> L ist der Zerfällungskörper diese Polynoms, denn dessen
> Nullstellen [mm]$\{e^{\frac{2\pi{i}}{17}}, (e^{\frac{2\pi{i}}{17}})^2 = e^{\frac{4\pi{i}}{17}}, \ldots, (e^{\frac{2\pi{i}}{17}})^17 = 1\}[/mm]
> liegen alle in L.
> [mm]\zeta[/mm] ist primitive 17. Einheitswurzel [mm]\Rightarrow Gal(L,\IQ) \cong (\IZ/17\IZ)^\times[/mm]
> Da 17 prim ist, ist [mm]$\IZ/17\IZ$[/mm] endlicher Körper
> [mm]$\Rightarrow (\IZ/17\IZ)^\times$[/mm] ist zyklisch von der
> Ordnung 16, d.h G ist zyklisch [mm]$\Rightarrow \exists\:\tau \in[/mm]
> G: [mm]G=\{1,\ldots, \tau^15\}.[/mm]
> Damit existieren die Untergruppen:
> [mm]H_1 = \{1,\tau^8\}, ord\:H_1=2[/mm]
> [mm]H_2 = \{1, \tau^4, \tau^8, \tau^12\}, ord\:H_2 =4[/mm]
>
> [mm]H_3 = \{1, \tau^2, \ldots, \tau^14\}, ord\:H_3=8[/mm]
>
> Ist das so erstmal richtig?
Ja, das stimmt soweit.
> b)Um jetzt die Elemente der Untergruppen auf [mm]\zeta[/mm] anwenden
> zu können, muss ich nun wissen, wie die Automorphismen der
> Galoisgruppe explizit aussehen. Dazu reicht es ja den
> Erzeuger zu kennen.
> Ist [mm]\sigma \in G[/mm], so muss [mm]\sigma \; \IQ[/mm] elementweise
> festlassen. Außerdem permutiert [mm]\sigma[/mm] die Nullstellen von
> f, wobei eine Nullstelle, nämlich 1, fest bleiben muss.
> Da [mm](1, \zeta, \zeta^2, \ldots, \zeta^{16})[/mm] eine Basis des
> [mm]\IQ[/mm]-VR L ist, ist [mm]\sigma[/mm] durch das Bild von [mm]\zeta[/mm] eindeutig
> festgelegt.
> Ich würde vermuten, dass [mm]tau:\zeta \mapsto \zeta^2[/mm] ein
> Erzeuger der Galoisgruppe ist, das kann jedoch nicht sein,
> weil dann wäre bereits [mm]\tau^8 = id[/mm], da [mm]2^8 \: mod \: 17 =1[/mm].
> Wie kann ich rausfinden, wie ein Erzeuger von G aussieht?
Ein Erzeuger von $G$ zu finden entspricht gerade einem Erzeuger von [mm] $(\IZ/17\IZ)^\ast$ [/mm] zu finden.
Da [mm] $\phi(17) [/mm] = 16$ nur den Primteiler 2 besitzt, ist $x [mm] \in (\IZ/17\IZ)^\ast$ [/mm] genau dann ein Erzeuger, wenn [mm] $x^{16/2} [/mm] = [mm] x^8 \neq [/mm] 1$ ist. So stellst du etwa fest, dass [mm] $3^8 \equiv [/mm] -1 [mm] \pmod{17}$ [/mm] ist, womit [mm] $\zeta \mapsto \zeta^3$ [/mm] ein Erzeuger der Galoisgruppe ist.
Dass [mm] $\sum_{\sigma \in H_i} \zeta^\sigma \in Fix(H_i)$ [/mm] folgt daraus, dass ein Erzeuger von [mm] $H_i$ [/mm] das Element [mm] $\sum_{\sigma \in H_i} \zeta^\sigma$ [/mm] festhaelt. (Das gilt sogar bei beliebigen Galoisgruppen und beliebigen Untergruppen [mm] $H_i$, [/mm] dazu brauchst du nicht dass es zyklisch ist.) Und damit [mm] $\sum_{\sigma \in H_i} \zeta^\sigma \not\in Fix(H_{i+1})$ [/mm] ist, musst du nachrechnen, dass ein Erzeuger von [mm] $H_{i+1}$ [/mm] das Element veraendert. Das ist aber nicht sehr schwer mit deinen obigen Darstellungen der [mm] $H_i$ [/mm] durch Potenzen von [mm] $\tau$. [/mm] Es reicht eigentlich zu beachten, dass [mm] $\sigma^0, \dots, \sigma^{16}$ $\IQ$-linear [/mm] unabhaengig sind.
Der letzte Teil von b) folgt daraus, dass [mm] $[Fix(H_i) [/mm] : [mm] Fix(H_{i+1})] [/mm] = [mm] [H_{i+1} [/mm] : [mm] H_i] [/mm] = 2$ ist.
Fuer c) musst du dir den Zusammenhang zwischen iterierten Quadratwurzelerweiterungen und expliziten Konstruktionen mit Zirkel und Lineal anschauen.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:14 Do 13.01.2011 | Autor: | Lippel |
Hallo Felix, vielen Dank für deine Tipps.
Teil b) hat dann auch ohne Probleme funktioniert, Teil c) erfordert dann eben Geduld :)
LG Lippel
|
|
|
|