Adjungierte Abb. bzgl. Skprod. < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:05 Sa 17.12.2011 | Autor: | Foto |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich habe hier eine Aufgabe mit der ich überhaupt nicht klar komme. Also das Problem ist, dass ich beim Thema Skalarprodukte und adjungierte Abb. total rausgekommen bin, s.d. ich noch nicht mal einen Ansatz habe. Also die Aufg. lautet:
Sei [mm] (x_{1},x_{2}, x_{3})(y_{1},y_{2},y_{3})= 3x_{1}y_{1}+x_{1}y_{2}+x_{2}y_{1}+x_{2}y_{2}+3x_{1}y_{3}+3x_{3}y_{1}+5x_{3}y_{3}
[/mm]
ein Skalarprodukt auf dem [mm] \IR [/mm] Vektorraum [mm] \IR^{3} [/mm] und sei [mm] \alpha \in Hom_{\IR}(V,V) [/mm] def. durch [mm] \alpha (x_{1},x_{2}, x_{3})= [/mm] ( [mm] 2x_{1}-x_{3},3x_{1}+x_{2},-x_{2}+2 x_{3}). [/mm] Bstimmen Sie die adjungierte Abbildung bzgl. des Skalarprodukts.
Ich hoffe ihr könnt mir helfen
Gruß
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:26 Sa 17.12.2011 | Autor: | hippias |
Die zu [mm] $\alpha$ [/mm] adjungierte Abbildung [mm] $\alpha^{\*}$ [/mm] hat die EIgenschaft, dass - in eurer komischen Schreibweise - fuer alle $x,y$ gilt: [mm] $(\alpha(x))y= x(\alpha^{\*}(y))$. [/mm] Mein Tip ist: Wenn [mm] $e_{1}, e_{2}, e_{3}$ [/mm] die Standardbasis ist, dann mache den Ansatz [mm] $e_{j}^{\alpha^{\*}}= \sum_{i=1}^{3} a_{i,j} e_{j}$ [/mm] und werte damit die Skalarprodukte [mm] $(e_{i}^{\alpha})e_{j}= e_{i}(e_{j}^{\alpha^{\*}})$ [/mm] fuer $i,j= 1, 2, 3$ aus, um die [mm] $a_{i,j}$ [/mm] zu ermitteln.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:24 Sa 17.12.2011 | Autor: | Foto |
Erst einmal Danke für die Antwort. Aber ich verstehe deinen Tipp nicht. Ich komme mit diesem Thema überhaupt nicht klar.
???
Gruß
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:30 So 18.12.2011 | Autor: | hippias |
Ich mache Ansatz [mm] $e_{i}^{\alpha^{\*}}= \sum_{j=1}^{3} a_{i,j}e_{j}$ [/mm] und rechne [mm] $e_{1}(e_{1}^{\alpha^{\*}})= e_{1}\sum_{j=1}^{3} a_{1,j}e_{j}= \sum_{j=1}^{3} a_{1,j}(e_{1}e_{j})= 3a_{1,1}+a_{1,2}+ 3a_{1,3}$ [/mm] nach Definition des Skalarproduktes. Also muss [mm] $3a_{1,1}+a_{1,2}+ 3a_{1,3}= (e_{1}^{\alpha})e_{1}$ [/mm] sein - was Du selber ausrechnen sollst. Damit hast Du eine Gleichung für die Unbekannten [mm] $a_{i,j}$. [/mm] Dies machst Du fuer alle moeglichen Basenpaaren [mm] $e_{i}, e_{j}$, [/mm] um die Koeffinzienten zu bestimmen. Vielleicht laesst sich die Rechnung vereinfachen, wenn Du eine andere Basis benutzt...
|
|
|
|