Aff. Unterräume / NSt-Mengen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:29 Mo 09.04.2012 | Autor: | marc1601 |
Aufgabe | Sei $V [mm] \subseteq K^n$ [/mm] ein affiner $d$-dimensionaler Unterraum. Zeigen Sie, dass $V$ die Nullstellenmenge von $n-d$ linearen Polynomen ist. |
Hallo zusammen,
meine Idee bei der Aufgabe war, dass ich $V= u + V'$ schreiben kann, wenn $u [mm] \in K^n$ [/mm] und $V'$ ein $d$-dimensionaler UVR von [mm] $K^n$ [/mm] ist. Wenn ich mir dann eine Basis [mm] $v_1, \ldots, v_d$ [/mm] von $V'$ wähle, kann ich diese ja mit [mm] $u_1, \ldots, u_{n-d}$ [/mm] zu einer Basis von [mm] $K^n$ [/mm] ergänzen. Kann ich mir dann einfach die $n-d$ Polynome explizit definieren oder bin ich auf dem Holzweg?
Vielen Dank schon einmal für die Antwort.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:58 Di 10.04.2012 | Autor: | hippias |
Vielleicht weisst Du, dass man eine lineare Hyperebene als Kern eines linearen Funktionals darstellen kann; diese Darstellung laesst sich auch leicht abaendern als die Loesungsmenge eines homogenen Gleichungssystems. Einerseits laesst sich nun diese Darstellung auf lin. Unterraeume belieber Dimension verallgemeinern, andererseits gilt dies auch fuer affine Unterraeume.
|
|
|
|