Allg. Verständnisfrage zu R^x < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:06 Mi 24.10.2007 | Autor: | Kreator |
Aufgabe | f: [mm] \IR^{2} \to \IR^{2}; [/mm] (u,v) [mm] \mapsto [/mm] f(u,v) = [mm] \vektor{u*cos(v) \\ u*sin(v) \\ u^{2}}
[/mm]
g: [mm] \IR^{3} \to \IR; [/mm] (x,y,z) [mm] \mapsto [/mm] f(x,y,z) = [mm] x^{2}*ln(y)+ \bruch{y}{z}*ln(z) [/mm] |
Ich habe eine allgemeine Verständnisfrage zu den oben gezeigten Darstellungen. Die Parameterdarstellung (f) sowie die Koordinatendarstellung (g) verstehe ich und ich kann auch mit ihnen Rechnen, was ich aber nicht verstehe sind die jeweils am Anfang stehenden "R-Zuordnungen". Könnte mir da evenutell jemand weiterhelfen? Steht die Potenz von R für die Anzahl Dimensionen, aus denen man die die Gleichung definiert? Irgendiwe blicke ich da nicht ganz durch :-(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:19 Mi 24.10.2007 | Autor: | barsch |
Hi,
f: $ [mm] \IR^{2} \to \IR^{2}; [/mm] $ (u,v) $ [mm] \mapsto [/mm] $ f(u,v) = $ [mm] \vektor{u\cdot{}cos(v) \\ u\cdot{}sin(v) \\ u^{2}} [/mm] $
bedeutet, du nimmst dir einen Vektor [mm] (u,v)\in{\IR^2}. [/mm] Die Funktionsvorschrift [mm] f(u,v)=\vektor{u\cdot{}cos(v) \\ u\cdot{}sin(v) \\ u^{2}} [/mm] bildet in [mm] \IR^3 [/mm] ab.
Eigentlich müsste es auch heißen: [mm] f:\IR^{2} \to \IR^{3} [/mm] , da [mm] \vektor{u\cdot{}cos(v) \\ u\cdot{}sin(v) \\ u^{2}}\in\IR^3.
[/mm]
Bei der 2. Aufgabe:
g: $ [mm] \IR^{3} \to \IR; [/mm] $ (x,y,z) $ [mm] \mapsto [/mm] $ f(x,y,z) = $ [mm] x^{2}\cdot{}ln(y)+ \bruch{y}{z}\cdot{}ln(z) [/mm] $
nimmst du einen Vektor: [mm] (x,y,z)\in\IR^3 [/mm] und bildest diesen ab:
[mm] f(x,y,z)=x^{2}\cdot{}ln(y)+ \bruch{y}{z}\cdot{}ln(z) \in\IR
[/mm]
Ich hoffe, es ist verständlich und hilft dir weiter. Habe erst beim Beantworten gemerkt, dass es nicht so einfach ist, dass zu erklären
Deswegen lasse ich die Frage einmal teilweise offen. Es gibt sicher bessere Erklärungen.
MfG barsch
|
|
|
|
|
Hallo Kreator!
> f: [mm]\IR^{2} \to \IR^{2};[/mm] (u,v) [mm]\mapsto[/mm] f(u,v) =
> [mm]\vektor{u*cos(v) \\ u*sin(v) \\ u^{2}}[/mm]
>
> g: [mm]\IR^{3} \to \IR;[/mm] (x,y,z) [mm]\mapsto[/mm] f(x,y,z) = [mm]x^{2}*ln(y)+ \bruch{y}{z}*ln(z)[/mm]
>
> Ich habe eine allgemeine Verständnisfrage zu den oben
> gezeigten Darstellungen. Die Parameterdarstellung (f) sowie
> die Koordinatendarstellung (g) verstehe ich und ich kann
> auch mit ihnen Rechnen, was ich aber nicht verstehe sind
> die jeweils am Anfang stehenden "R-Zuordnungen". Könnte mir
> da evenutell jemand weiterhelfen? Steht die Potenz von R
> für die Anzahl Dimensionen, aus denen man die die Gleichung
> definiert? Irgendiwe blicke ich da nicht ganz durch :-(
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Eigentlich hat barsch schon alles gesagt. Ich versuche es mal mit anderen Worten:
[mm] $f:V\to [/mm] W$ bedeutet, dass die Abbildung f ein Element von V (was auch immer das sein mag) nimmt und es abbildet auf ein Element, das sich in W befindet (das kann auch erstmal allgemein irgendwas sein). Bei eindimensionalen Funktionen, die man aus der Schule kennt, bildet man normalerweise einfach von [mm] \IR [/mm] nach [mm] \IR [/mm] ab, das heißt, man nimmt eine reelle Zahl und bildet sie wieder auf eine reelle Zahl ab. Nun könntest du aber auch eine reelle Zahl auf einen Vektor abbilden, also z. B. [mm] \IR\to\IR^2. [/mm] Dann wäre dein "Definitionsbereich" ganz [mm] \IR [/mm] und der "Wertebereich" eben [mm] \IR^2. [/mm] Du könntest auch ein Tupel z. B. auf die Summe seiner Elemente abbilden: [mm] $f(u,v)\mapsto [/mm] u+v$, dann wäre f eine Abbildung von z. B. [mm] \IR^2 [/mm] (oder auch einfach [mm] K^2 [/mm] wenn du's allgemein haben möchtest oder auch [mm] $K\times [/mm] K$) nach [mm] \IR, [/mm] also z. B. [mm] f:\IR^2\to\IR.
[/mm]
Ist das verständlich? Eigentlich ist es ganz einfach und gar nicht sooo unbedingt wichtig, wenn du die konkrete Abbildungsvorschrift kennst. Dann siehst du ja sowieso von wo nach wo abgebildet wird.
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:01 Fr 26.10.2007 | Autor: | Kreator |
Ok, vielen Danke, denke dass ich es nun verstanden habe
|
|
|
|