Analysis < Test-Forum < Internes < Vorhilfe
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:14 Fr 07.10.2005 | Autor: | Bastiane |
ANALYSIS I:
Definition: Sei [mm] (a_n) [/mm] eine Folge reeller Zahlen. Die Folge heißt konvergent gegen [mm] a\in\IR, [/mm] falls gilt:
Zu jedem [mm] \varepsilon>0 [/mm] existiert ein [mm] N\in\IN, [/mm] so dass [mm] |a_n-a|<\varepsilon [/mm] für alle [mm] $n\ge [/mm] N$.
Definition: Eine Folge [mm] (a_n) [/mm] reeller Zahlen heißt nach oben (bzw. nach unten) beschränkt, wenn es eine Konstante [mm] K\in\IR [/mm] gibt, so dass
[mm] [quote]$a_n\le [/mm] K$ für alle [mm] n\in\IN [/mm] (bzw. [mm] $a_n\ge [/mm] K$ für alle [mm] $n\in\IN$).[/quote]
[/mm]
Die Folge [mm] (a_n) [/mm] heißt beschränkt, wenn es eine reelle Konstante [mm] $M\ge [/mm] 0$ gibt, so dass
[mm] [quote]$|a_n|\le [/mm] M$ für alle $n$.[/quote]
Folge konvergent [mm] \Rightarrow [/mm] Folge beschränkt
Folge konvergent [mm] \not\Leftarrow [/mm] Folge beschränkt (Gegenbeispiel: [mm] a_n=(-1)^n)
[/mm]
Unendliche geometrische Reihe:
Die Reihe [mm] \summe_{n=0}^{\infty}x^n [/mm] konvergiert für alle $|x|<1$ mit dem Grenzwert [mm] \summe_{n=0}^{\infty}x^n=\bruch{1}{1-x}. [/mm]
(Beweis über [mm] s_n=\summe_{k=0}^nx^k=\bruch{1-x^{n+1}}{1-x})
[/mm]
Durch das Vollständigkeitsaxiom lassen sich die reellen Zahlen darstellen als Grenzwert einer Cauchy-Folge.
Satz von Bolzano-Weierstraß: Jede beschränkte Folge [mm] (a_n) [/mm] reeller Zahlen besitzt eine konvergente Teilfolge.
Beweisskizze:
a) Intervallschachtelung mit Induktion mit folgenden Eigenschaften:
i) In [mm] I_k [/mm] liegen unendlich viele Glieder der Folge [mm] (a_n)
[/mm]
ii) [mm] I_k\subset I_{k-1} [/mm] für [mm] k\ge [/mm] 1,
iii) [mm] $diam(I_k)=2^{-k}diam(I_0)$.
[/mm]
b) definiere induktiv Teilfolge [mm] (a_{n_k})_{k\in\IN} [/mm] mit [mm] $a_{n_k}\in I_k$ [/mm] für alle [mm] k\in\IN.
[/mm]
c) Beweis, dass [mm] a_{n_k} [/mm] konvergiert, durch Beweis, dass [mm] a_{n_k} [/mm] Cauchyfolge.
Satz: Jede beschränkte monotone Folge [mm] (a_n) [/mm] reeller Zahlen konvergiert. (Beweis mit Bolzano-Weierstraß)
Konvergenz...
Cauchysches Konvergenz-Kriterium: Sei [mm] (a_n) [/mm] eine Folge reeller Zahlen. Die Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] konvergiert genau dann, wenn gilt: Zu jedem [mm] $\varepsilon [/mm] >0$ existiert ein [mm] N\in\IN, [/mm] so dass [mm] \big|\summe_{k=m}^na_k\big|<\varepsilon [/mm] für alle [mm] $n\ge m\ge [/mm] N$. (Beweis durch [mm] S_n:=N-\mbox{te} [/mm] Partialsumme, dann ist die Reihe [mm] =S_n-S_{m-1}, [/mm] was die Konvergenz bedeutet)
Satz: Eine notwendige (aber nicht hinreichende) Bedingung für die Konvergenz einer Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] ist, dass [mm] \lim_{n\to\infty}a_n=0. [/mm] (Beweis durch Hinschreiben...)
Satz: Eine Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] mit [mm] $a_n\ge [/mm] 0$ für alle [mm] n\in\IN [/mm] konvergiert genau dann, wenn die Reihe (d.h. die Folge der Partialsummen) beschränkt ist. (Beweis: da [mm] $a_n\ge [/mm] 0$, ist die Folge der Partialsummen monoton wachsend [mm] \to [/mm] Konvergenz monotoner beschränkter Folgen)
Beispiele:
Die harmonische Reihe [mm] \summe_{n=1}^{\infty}\bruch{1}{n}. [/mm] Die Reihenglieder konvergieren gegen 0, trotzdem divergiert die Reihe. ("Beweis" über geschickte Klammerung der Reihenglieder (2, dann 4, dann 8 usw.), sodass jede Klammer [mm] $\ge \bruch{1}{2}$ [/mm] ist, wodurch die Unbeschränktheit folgt.)
Die Reihen [mm] \summe_{n=1}^{\infty}\bruch{1}{n^k} [/mm] für $k>1$ konvergieren. ("Beweis": Partialsummen sind durch [mm] \bruch{1}{1-2^{-k+1}} [/mm] beschränkt.)
Leibniz'sches Konvergenz-Kriterium: Sei [mm] (a_n) [/mm] eine monoton fallende Folge nicht-negativer Zahlen mit [mm] \lim_{n\to\infty}a_n=0. [/mm] Dann konvergiert die alternierende Reihe [mm] \summe_{n=0}^{\infty}(-1)^na_n. [/mm] (Beweisskizze: [mm] s_k:=\summe_{n=0}^k(-1)^na_n;\; (s_{2k})_{k\in\IN} [/mm] ist monoton fallend und beschränkt, da [mm] $s_{2k}\ge s_1$ [/mm] existiert [mm] \lim_{k\to\infty}s_{2k}; [/mm] analog für [mm] s_{2k+1}; [/mm] beide Grenzwerte gleich - Grenzwert der Reihe)
Beispiele:
Die alternierende harmonische Reihe [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n-1}}{n} [/mm] konvergiert nach dem Leibniz'schen Konvergenz-Kriterium.
Definition: Eine Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] heißt absolut konvergent, falls die Reihe der Absolutbeträge [mm] \summe_{n=0}^{\infty}|a_n| [/mm] konvergiert.
Eine Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] ist genau dann absolut konvergent, wenn [mm] $\summe_{n=0}^{\infty}{|a_n|}<\infty$.
[/mm]
Satz: Eine absolut konvergente Reihe konvergiert auch im gewöhnlichen Sinn. (Beweis mit dem Cauchyschen Konvergenz-Kriterium durch Hinschreiben)
Majoranten-Kriterium: Sei [mm] \summe_{n=0}^{\infty}c_n [/mm] eine konvergente Reihe mit lauter nicht-negativen Gliedern und [mm] (a_n) [/mm] eine Folge mit [mm] $|a_n|\le c_n$ [/mm] für alle [mm] n\in\IN. [/mm] Dann konvergiert die Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] absolut. (Beweis mit Cauchyschem Konvergenz-Kriterium und durch Hinschreiben)
Quotienten-Kriterium: Sei [mm] \summe_{n=0}^{\infty}a_n [/mm] eine Reihe mit [mm] a_n\not=0 [/mm] für alle [mm] $n\ge n_0$. [/mm] Es gebe eine reelle Zahl [mm] \theta [/mm] mit [mm] 0<\theta<1, [/mm] so dass [mm] \big|\bruch{a_{n+1}}{a_n}\big|\le\theta [/mm] für alle [mm] $n\ge n_0$. [/mm] Dann konvergiert die Reihe [mm] \summe_{n=0}^{\infty}a_n [/mm] absolut. (Beweis: [mm] \big|\bruch{a_{n+1}}{a_n}\big|\le\theta [/mm] für alle [mm] n\in\IN \to [/mm] Induktion [mm] \to |a_n|\le|a_0|\theta^n [/mm] für alle [mm] n\in\IN \to [/mm] Majorante [mm] \to [/mm] geometrische Reihe)
Es reicht nicht [mm] \big|\bruch{a_{n+1}}{a_n}\big|<1 [/mm] für alle [mm] $n\ge n_0$. [/mm] Gegenbeispiel: harmonische Reihe [mm] $\summe_{n=1}^{\infty}\bruch{1}{n}$!
[/mm]
Quotienten-Kriterium nur hinreichend, nicht notwendig!
Umordnungssatz: Sei [mm] \summe_{n=0}^{\infty}a_n [/mm] eine absolut konvergente Reihe. Dann konvergiert auch jede Umordnung dieser Reihe absolut gegen denselben Grenzwert.
Die Exponentialreihe
Satz: Für jedes [mm] x\in\IR [/mm] ist die Exponentialreihe [mm] \exp(x):=\summe_{n=0}^{\infty}\bruch{x^n}{n!} [/mm] absolut konvergent. (Beweis: mit dem Quotientenkriterium, Abschätzung durch [mm] \bruch{1}{2})
[/mm]
Satz (Abschätzung des Restglieds): Es gilt [mm] \exp(x)=\summe_{n=0}^N\bruch{x^n}{n!}+R_{N+1}(x), [/mm] wobei [mm] |R_{N+1}(x)|\le 2\bruch{|x|^{N+1}}{(N+1)!} [/mm] für alle x mit [mm] |x|\le 1+\bruch{1}{2}N.
[/mm]
Bei Abbruch der Reihe ist also der Fehler in dem angegebenen x-Bereich dem Betrage nach höchstens zweimal so groß wie das erste nicht berücksichtigte Glied. (Beweis: mit "geschickter" Schreibweise für die Funktion und geometrischer Reihe)
Satz: Die Vereinigung abzählbar vieler abzählbarer Mengen [mm] M_n, n\in\IN, [/mm] ist wieder abzählbar. (Beweis durch quadratische Anordnung (ähnlich wie bei rationalen Zahlen))
[mm] \IQ [/mm] ist abzählbar (Beweis: [mm] \IZ [/mm] ist abzählbar, deswegen für feste natürliche Zahl [mm] $k\le [/mm] 1$: [mm] A_k:=\{\bruch{n}{k}:n\in\IZ\} [/mm] abzählbar, da [mm] \IQ=\bigcup_{k\ge 1}A_k, [/mm] ist nach obigem Satz auch [mm] \IQ [/mm] abzählbar)
[mm] \IR [/mm] ist überabzählbar.
(Beweis: Seite 83 Forster)
Stetigkeit
Definition: Sei [mm] f:D\to\IR [/mm] eine Funktion und [mm] $a\in [/mm] D$. Die Funktion f heißt stetig im Punkt a, falls [mm] \lim_{x\to a}f(x)=f(a).
[/mm]
f heißt stetig in D, falls f in jedem Punkt von D stetig ist.
Satz (Zwischenwertsatz): Sei [mm] f:[a,b]\to\IR [/mm] eine stetige Funktion mit $f(a)<0$ und $f(b)>0$ (bzw. $f(a)>0$ und $f(b)<0$). Dann existiert ein [mm] p\in[a,b] [/mm] mit $f(p)=0$. (Beweis über Intervall-Halbierung [mm] \to [/mm] Folgen der Endpunkte sind monoton wachsend bzw. fallend und beschränkt, daher konvergent, mit Stetigkeit folgt [mm] $f(p)=\lim{f(a_n)}\le [/mm] 0$ und [mm] $f(p)=\lim{(b_n)}\ge [/mm] 0$.)
Satz [mm] ($\varepsilon-\delta-$Definition [/mm] der Stetigkeit): Sei [mm] D\subset\IR [/mm] und [mm] f:D\to\IR [/mm] eine Funktion. f ist genau dann in [mm] $p\in [/mm] D$ stetig, wenn es zu jedem [mm] $\varepsilon>0$ [/mm] ein [mm] $\delta>0$ [/mm] gibt, so dass [mm] |f(x)-f(p)|<\varepsilon [/mm] für alle [mm] $x\in [/mm] D$ mit [mm] $|x-p|<\delta$.
[/mm]
Definition: Eine Funktion [mm] f:D\to\IR [/mm] heißt in D gleichmäßig stetig, wenn gilt:
Zu jedem [mm] \varepsilon>0 [/mm] existiert ein [mm] \delta>0, [/mm] so dass [mm] |f(x)-f(x')|<\varepsilon [/mm] für alle [mm] $x,x'\in [/mm] D$ mit [mm] $|x-x'|<\delta$.
[/mm]
Eine gleichmäßig stetige Funktion [mm] f:D\to\IR [/mm] ist in jedem Punkt [mm] $p\in [/mm] D$ stetig. Die Umkehrung gilt aber i. Allg. nicht (Gegenbeispiel: [mm] f:]0,1]\to\IR, \;x\mapsto\bruch{1}{x}; [/mm] nicht glm. stetig, da für [mm] \varepsilon=1 [/mm] kein entsprechendes [mm] \delta [/mm] existiert)
Satz: Jede auf einem kompakten Intervall stetige Funktion [mm] f:[a,b]\to\IR [/mm] ist dort gleichmäßig stetig.
Definition (Exponentialfunkion zur Basis a): Für [mm]a>0[/mm] sei die Funktion [mm] \exp_a(x):=\exp(x\log{a}).
[/mm]
Komplexe Zahlen
Definition: Eine Reihe [mm] \summe_{n=0}^{\infty}c_n [/mm] komplexer Zahlen heißt konvergent, wenn die Folge der Partialsummen [mm] s_n:=\summe_{k=0}^nc_n, n\in\IN, [/mm] konvergiert. Sie heißt absolut konvergent, wenn die Reihe [mm] \summe_{n=0}^{\infty}|c_n| [/mm] der Absolut-Beträge konvergiert.
Für alle [mm] x\in\IR [/mm] ist [mm] |e^{ix}|=1, [/mm] denn [mm] |e^{ix}|^2=e^{ix}e^{\overline{ix}}=e^{ix}e^{-ix}=e^0=1.
[/mm]
Satz: Für alle [mm] x\in\IR [/mm] gilt:
a) [mm] \cos{x}=\bruch{1}{2}(e^{ix}+e^{-ix}),\;\sin{x}=\bruch{1}{2i}(e^{ix}-e^{-ix}).
[/mm]
b) [mm] \cos{(-x)}=\cos{x},\;\sin{(-x)}=-\sin{x}.
[/mm]
c) [mm] \cos^2{x}+\sin^2{x}=1. [/mm]
Satz (Additionstheoreme): Für alle x, [mm] y\in\IR [/mm] gilt:
[mm] \cos{(x+y)}=\cos{x}\cos{y}-\sin{x}\sin{y},
[/mm]
[mm] \sin{(x+y)}=\sin{x}\cos{y}+\cos{x}\sin{y}. [/mm]
Satz: Für alle [mm] x\in\IR [/mm] gilt:
[mm] \cos{x}=\summe_{k=0}^{\infty}(-1)^k\bruch{x^{2k}}{(2k)!}=1-\bruch{x^2}{2}+\bruch{x^4}{4!}\mp...,
[/mm]
[mm] \sin{x}=\summe_{k=0}^{\infty}(-1)^{k}\bruch{x^{2k+1}}{(2k+1)!}=x-\bruch{x^3}{3!}+\bruch{x^5}{5!}\mp.... [/mm]
Diese Reihen konvergieren absolut für alle [mm] x\in\IR.
[/mm]
Satz (Abschätzung der Restglieder): Es gilt
[mm] \cos{x}=\summe_{k=0}^n(-1)^k\bruch{x^{2k}}{(2k)!}+r_{2n+2}(x), [/mm]
[mm] \sin{x}=\summe_{k=0}^n(-1)^k\bruch{x^{2k+1}}{(2k+1)!}+r_{2n+3}(x), [/mm]
wobei [mm] |r_{2n+2}(x)|\le\bruch{|x|^{2n+2}}{(2n+2)!} \; [/mm] für [mm] $|x|\le [/mm] 2n+3$,
[mm] |r_{2n+3}(x)|\le\bruch{|x|^{2n+3}}{(2n+3)!} \; [/mm] für [mm] $|x|\le [/mm] 2n+4$.
Satz (Spezielle Werte der Exponentialfunktion):
[mm] e^{i\bruch{\pi}{2}}=i, \; e^{i\pi}=-1, \; e^{i\bruch{3\pi}{2}}=-i, \; e^{2\pi i}=1. [/mm]
Differentiation
Definintion: Sei [mm] V\subset\IR [/mm] und [mm] f:V\to\IR [/mm] eine Funktion. $f$ heißt in einem Punkt [mm] $x\in [/mm] V$ differenzierbar, falls der Grenzwert [mm] f'(x)=\lim_{\xi\to x}\bruch{f(\xi)-f(x)}{\xi-x} [/mm] existiert.
Der Grenzwert $f'(x)$ heißt Differentialquotient oder Ableitung von $f$ im Punkte $x$. Die Funktion $f$ heißt differenzierbar in $V$, falls $f$ in jedem Punkt [mm] $x\in [/mm] V$ differenzierbar ist.
alternativ: [mm] f'(x)=\lim_{h\to 0}\bruch{f(x+h)-f(x)}{h}
[/mm]
Satz (Lineare Approximierbarkeit): Sei [mm] V\subset\IR [/mm] und [mm] $a\in [/mm] V$ ein Häufungspunkt von $V$. Eine Funktion [mm] f:V\to\IR [/mm] ist genau dann im Punkt a differenzierbar, wenn es eine Konstante [mm] c\in\Ir [/mm] gibt, so dass [mm] f(x)=f(a)+c(x-a)+\varphi(x), \; ($x\in [/mm] V$), wobei [mm] \varphi [/mm] eine Funktion ist, für die gilt [mm] \lim_{x\to a}\bruch{\varphi(x)}{x-a}=0. [/mm] In diesem Fall ist $c=f'(a)$. (Beweis durch Hinschreiben: [mm] \bruch{\varphi(x)}{x-a}=...)
[/mm]
Corollar: Ist die Funktion [mm] f:V\to\IR [/mm] im Punkt [mm] $a\in [/mm] V$ differenzierbar, so ist sie in a auch stetig. (Beweis: es gilt [mm] \lim_{x\to a}\varphi(x)=0, [/mm] also [mm] \lim_{x\to a}f(x)=f(a)+\lim_{x\to a}(c(x-a)+\varphi(x))=f(a). [/mm] )
Satz (Ableitung der Umkehrfunktion): Sei [mm] I\subset\IR [/mm] ein nicht-triviales (d. h. ein aus mehr als einem Punkt bestehendes) Intervall, [mm] f:I\to\IR [/mm] eine stetige, streng monotone Funktion und [mm] g=f^{-1}:J\to\IR [/mm] die Umkehrfunktion, wobei $J=f(I)$. Ist $f$ im Punkt [mm] $x\in [/mm] I$ differenzierbar und [mm] f'(x)\not=0, [/mm] so ist $g$ im Punkt $y:=f(x)$ differenzierbar und es gilt [mm] g'(y)=\bruch{1}{f'(x)}=\bruch{1}{f'(g(y))}.
[/mm]
Die Funktion [mm] f:V\to\IR [/mm] heißt k-mal differenzierbar in $V$, wenn $f$ in jedem Punkt [mm] $x\in [/mm] V$ k-mal differenzierbar ist. Sie heißt k-mal stetig differenzierbar in $V$, wenn überdies die k-te Ableitung [mm] f^{(k)}:V\to\IR [/mm] in $V$ stetig ist.
Unter der 0-ten Ableitung einer Funktion versteht man die Funktion selbst.
Satz (Satz von Rolle): Sei $a<b$ und [mm] f:[a,b]\to\IR [/mm] eine stetige Funktion mit $f(a)=f(b)$. Die Funktion $f$ sei in $]a,b[$ differenzierbar. Dann existiert ein [mm] \xi\in]a,b[ [/mm] mit [mm] f'(\xi)=0. [/mm] (Beweis: Falls $f$ konstant ist, ist der Satz trivial. Ist $f$ nicht konstant, so gibt es ein [mm] x_0\in]a,b[ [/mm] mit [mm] f(x_0)>f(a) [/mm] oder [mm] f(x_0)
Satz (Mittelwertsatz der Differentialrechnung): Sei $a<b$ und [mm] f:[a,b]\to\IR [/mm] eine stetige Funktion, die in $]a,b[$ differenzierbar ist. Dann existiert ein [mm] \xi\in]a,b[, [/mm] so dass [mm] \bruch{f(b)-f(a)}{b-a}=f'(\xi). [/mm] (Beweis: [mm] F(x)=f(x)-\bruch{f(b)-f(a)}{b-a}(x-a) \to [/mm] ... [mm] \to \exists \xi\in]a,b[ [/mm] mit [mm] F'(\xi)=0)
[/mm]
Satz: Sei [mm] c\in\IR [/mm] eine Konstante und [mm] f:\IR\to\IR [/mm] eine differenzierbare Funktion mit $f'(x)=cf(x)$ für alle [mm] x\in\IR. [/mm] Sei $A:=f(0)$. Dann gilt [mm] f(x)=Ae^{cx} [/mm] für alle [mm] x\in\IR. [/mm] (Beweis: [mm] F(x):=f(x)e^{-cx} \to [/mm] $F'(x)=...=0$ [mm] \to [/mm] $F$ konstant [mm] \to [/mm] da $F(0)=f(0)=A$, ist $F(x)=A$ für alle [mm] x\in\IR)
[/mm]
Satz: Sei [mm] D\subset\IR [/mm] ein offenes Intervall und [mm] f:D\to\IR [/mm] eine zweimal differenzierbare Funktion. $f$ ist genau dann konvex, wenn [mm] $f''(x)\ge [/mm] 0$ für alle [mm] $x\in [/mm] D$.
Satz (Regeln von de l'Hospital): Seien [mm] $f,g:I\to\IR$ [/mm] zwei differenzierbare Funktionen auf dem Intervall $I=]a,b[$, [mm] ($-\infty\le a
1) Falls [mm] \lim_{x\to b}g(x)=\lim_{x\to b}f(x)=0, [/mm] ist [mm] g(x)\not=0 [/mm] für alle [mm] $x\in [/mm] I$ und [mm] \lim_{x\to b}\bruch{f(x)}{g(x)}=c.
[/mm]
2) Falls [mm] \lim_{x\to b}g(x)=\pm\infty, [/mm] ist [mm] g(x)\not=0 [/mm] für [mm] $x\ge x_0$, (a
Analoge Aussagen gelten für den Grenzübergang [mm] $x\to [/mm] a$.
Integralrechnung
Satz (Mittelwertsatz der Integralrechnung): Seien [mm] $f,\varphi:[a,b]\to\IR$ [/mm] stetige Funktionen und [mm] $\varphi\ge [/mm] 0$. Dann existiert ein [mm] \xi\in[a,b], [/mm] so dass [mm] \integral_a^bf(x)\varphi(x)dx=f(\xi)\integral_a^b\varphi(x)dx. [/mm] Im Spezialfall [mm] \varphi=1 [/mm] hat man [mm] \integral_a^bf(x)dx=f(\xi)(b-a) [/mm] für ein [mm] \xi\in[a,b].
[/mm]
Satz (Fundamentalsatz der Differential- und Integralrechnung): Sei [mm] f:I\to\IR [/mm] eine stetige Funktion und F eine Stammfunktion von $f$. Dann gilt für alle [mm] $a,b\in [/mm] I$ [mm] \integral_a^b{f(x)dx}=F(b)-F(b).
[/mm]
Satz: Sei [mm] $f:[1,\infty[\to\IR_+$ [/mm] eine monoton fallende Funktion. Dann gilt: [mm] \summe_{n=1}^{\infty}f(n) [/mm] konvergiert [mm] \gdw \integral_1^{\infty}f(x)dx [/mm] konvergiert.
Definition (Eulersche Integraldarstellung der Gamma-Funktion): Für $x>0$ setzt man [mm] \Gamma(x):=\integral_0^{\infty}t^{x-1}e^{-t}dt.
[/mm]
Satz (H. Bohr): Sei [mm] F:\IR_+^{\star}\to\IR_+^{\star} [/mm] eine Funktion mit folgenden Eigenschaften:
a) $F(1)=1$,
b) $F(x+1)=xF(x)$ für alle [mm] x\in\IR_+^{\star}
[/mm]
c) $F$ ist logarithmisch konvex.
Dann gilt [mm] $F(x)=\Gamma(x)$ [/mm] für alle [mm] x\in\IR_+^{\star}.
[/mm]
Gleichmäßige Konvergenz von Funktionenfolgen
Definition: Sei $K$ eine Menge und seien [mm] f_n:K\to\IC, n\in\IN, [/mm] Funktionen.
a) Die Folge [mm] $(f_n)$ [/mm] konvergiert punktweise gegen eine Funktion [mm] f:K\to\IC, [/mm] falls für jedes [mm] $x\in [/mm] K$ die Folge [mm] (f_n(x)) [/mm] gegen $f(x)$ konvergiert, d.h. wenn gilt:
Zu jedem [mm] $x\in [/mm] K$ und [mm] \varepsilon>0 [/mm] existiert ein [mm] N=N(x,\varepsilon), [/mm] so dass [mm] |f_n(x)-f(x)|<\varepsilon [/mm] für alle [mm] $n\ge [/mm] N$.
b) Die Folge [mm] $(f_n)$ [/mm] konvergiert gleichmäßig gegen eine Funktion [mm] f:K\to\IC, [/mm] falls gilt:
Zu jedem [mm] \varepsilon>0 [/mm] existiert ein [mm] N=N(\varepsilon), [/mm] so dass [mm] |f_n(x)-f(x)|<\varepsilon [/mm] für alle [mm] $x\in [/mm] K$ und alle [mm] $n\ge [/mm] N$.
gleichmäßig konvergent [mm] \Rightarrow [/mm] punktweise konvergent
gleichmäßig konvergent [mm] \not\Leftarrow [/mm] punktweise konvergent
Satz: Sei [mm] K\subset\IC [/mm] und [mm] f_n:K\to\IC, n\in\IN, [/mm] eine Folge stetiger Funktionen, die gleichmäßig gegen die Funktion [mm] f_k\to\IC [/mm] konvergiere. Dann ist auch $f$ stetig.
Definition (Supremumsnorm): Sei $K$ eine Menge und [mm] f:K\to\IC [/mm] eine Funktion. Dann setzt man [mm] ||f||_K:=\sup\{|f(x)|:x\in K\}.
[/mm]
Satz (Konvergenzkrititerium von Weierstraß): Seien [mm] f_n:K\to\IC, n\in\IN, [/mm] Funktionen. Es gelte [mm] \summe_{n=0}^{\infty}||f_n||_K<\infty. [/mm] Dann konvergiert die Reihe [mm] \summe_{n=0}^{\infty}f_n [/mm] absolut und gleichmäßig auf $K$ gegen eine Funktion [mm] F:K\to\IC.
[/mm]
Potenzreihen
Satz: Sei [mm] (c_n) [/mm] eine Folge komplexer Zahlen und [mm] a\in\IC. [/mm] Die Potenzreihe [mm] f(z)=\summe_{n=0}^{\infty}c_n(z-a)^n [/mm] konvergiere für ein [mm] z_1\in\IC, $z_1\not= [/mm] a$. Sei r eine reelle Zahl mit [mm] 0
Definition: Sei [mm] f(z)=\summe_{n=0}^{\infty}c_n(z-a)^n [/mm] eine Potenzreihe. Dann heißt [mm] R:=\sup\{|z-a|:\summe_{n=0}^{\infty}c_n(z-a)^n \mbox{ konvergiert}\} [/mm] Konvergenzradius der Potenzreihe.
Satz: Sei [mm] f_n:[a,b]\to\IR, n\in\IN, [/mm] eine Folge stetiger Funktionen. Die Folge konvergiere auf $[a,b]$ gleichmäßig gegen die Funktion [mm] f:[a,b]\to\IR. [/mm] Dann gilt [mm] \integral_a^bf(x)dx=\lim_{n\to\infty}\integral_a^bf_n(x)dx.
[/mm]
Satz: Seien [mm] f_n:[a,b]\to\IR [/mm] stetig differenzierbare Funktionen [mm] (n\in\IN), [/mm] die punktweise gegen die Funktion [mm] f:[a,b]\to\IR [/mm] konvergieren. Die Folge der Ableitungen [mm] f_n':[a,b]\to\IR [/mm] konvergiere gleichmäßig. Dann ist [mm]f[/mm] differenzierbar und es gilt [mm] f'(x)=\lim_{n\to\infty}f_n'(x) [/mm] für alle [mm] x\in[a,b].
[/mm]
Taylorreihen
Satz (Taylorsche Formel): Sei [mm] f:I\to\IR [/mm] eine $(n+1)$-mal stetig differenzierbare Funktion und [mm] $a\in [/mm] I$. Dann gilt für alle [mm] $x\in [/mm] I$ [mm] f(x)=f(a)+\bruch{f'(a)}{1!}(x-a)+\bruch{f''(a)}{2!}(x-a)^2+...+\bruch{f^{(n)}(a)}{n!}(x-a)^n+R_{n+1}(x), [/mm] wobei [mm] R_{n+1}(x)=\bruch{1}{n!}\integral_a^x(x-t)^nf^{(n+1)}(t)dt.
[/mm]
Satz (Lagrangesche Form des Restglieds): Sei [mm] f:I\to\IR [/mm] eine $(n+1)$-mal stetig differenzierbare Funktion und [mm] $a,x\in [/mm] I$. Dann existiert ein [mm] \xi [/mm] zwischen $a$ und $x$, so dass [mm] f(x)=\summe_{k=0}^n\bruch{f^{(k)}(a)}{k!}(x-a)^k+\bruch{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.
[/mm]
Definition: Sei [mm] f:I\to\IR [/mm] eine beliebig oft differenzierbare Funktion und [mm] $a\in [/mm] I$. Dann heißt [mm] T[f,a](x):=\summe_{n=0}^{\infty}\bruch{f^{(k)}(a)}{k!}(x-a)^k [/mm] die Taylor-Reihe von $f$ mit Entwicklungspunkt $a$.
Bemerkung: Die Taylor-Reihe konvergiert genau für diejenigen [mm] $x\in [/mm] I$ gegen $f(x)$, für die das Restglied gegen 0 konvergiert.
Satz (Logarithmus-Reihe): Für [mm] $-1
|
|
|