Analytische Geometrie < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:09 Di 20.01.2009 | Autor: | baSSeL |
Aufgabe | Gegeben seien die Geraden g1: [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] = [mm] \begin{pmatrix} -5 \\ 8 \\ 0 \end{pmatrix} [/mm] + [mm] \lambda[/mm] [mm] \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} [/mm]
und g2: [mm] \begin{pmatrix} x \\ y \\ z \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix} [/mm] + µ [mm] \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} [/mm]
Betimmen Sie die Endpunkte P1 [mm] in [/mm] g1 und P2 [mm] in [/mm] g2 der kürzesten Strecke zwischen g1 und g2 sowie deren Länge d. |
Hallo!
Ich habe ein Problem bei folgender Aufgabe.
kein Problem ist es den Abstand d zu berechnen.
Jedoch muss ich dafür die Punkte P1 und P2 zuerst berechnen, habe aber keine Ahnung wie ich das machen soll.
Mein Lehrbuch behandelt diese Art Aufgabe, jedoch sind in den Beispielaufgaben immer die Punkte P1 und P2 gegeben.
Ich würde mich über einen kleinen Tipp freuen.
mfG Basti
ps: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo baSSeL,
die Geraden sind ja nicht parallel, wie Du sicherlich überprüft hast. Sie schneiden sich also, oder stehen windschief zueinander. Diese Fälle muss man nicht unterscheiden, weil sie im folgenden an unterschiedlichen Ergebnissen kenntlich werden:
Gesucht ist der kürzeste Abstand zwischen den Geraden. Wenn der 0 ist, schneiden sie sich natürlich.
Ansonsten verläuft die gesuchte Strecke in einer Richtung, die senkrecht zu beiden Geraden und damit deren Richtungsvektoren steht. Wäre nur der Abstand der Geraden zu ermitteln, gäbe es nun einen einfacheren Weg, aber da explizit die Strecke und ihre Fußpunkte gesucht sind, führt um das Folgende kein Weg herum:
Wenn Du den Richtungsvektor [mm] \vec{n_0} [/mm] der gesuchten Strecke ermittelt und normiert hast, dann ist zu bestimmen:
[mm] \overline{OP_1}=\begin{pmatrix} -5 \\ 8 \\ 0 \end{pmatrix}+\lambda_0*\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}
[/mm]
[mm] \overline{OP_2}=\begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix}+\mu_0 \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}
[/mm]
und zwar aus dieser Beziehung:
[mm] \begin{pmatrix} -5 \\ 8 \\ 0 \end{pmatrix}+\lambda_0*\begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}+\sigma*\vec{n}=\begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix}+\mu_0 \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}
[/mm]
Das ergibt ein lösbares LGS für die drei Variablen [mm] \lambda_0, \mu_0, \sigma.
[/mm]
Der kürzeste Abstand ist dann [mm] |\sigma|.
[/mm]
Und jetzt: viel Erfolg beim Rechnen!
Grüße,
reverend
PS: Normalerweise fallen die Tipps hier kleiner aus, und Du wirst auch aufgefordert, mehr Eigenleistung zu erbringen, mindestens die nötigen Definitionen, besser schon etwas eigenes Gehirnschmalz. So besagen es die Forenregeln.
Da Du aber löblicherweise direkt den Formeleditor einsetzt - bei Vektoren ja nicht ganz einfach -, hast Du für einen "newbie" schon viel Einsatz gezeigt. Übrigens finde ich die Vektor-Schreibweise
\vektor{a \\ b \\ c} für [mm] \vektor{a \\ b \\ c} [/mm] praktischer.
|
|
|
|