Anf-Randwertprobl Wärmeleitgl. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:04 Sa 02.01.2016 | Autor: | Teryosas |
Aufgabe | Lösen Sie das folgende Anfangs-Randwertproblem für die Wärmeleitungsgleichung:
[mm] \bruch{\partial u}{\partial t}(x,t) [/mm] = [mm] \bruch{\partial^2 u}{\partial x^2}(x,t) [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0
u(0,t) = 2 und u(1,t) = 0 für t [mm] \ge [/mm] 0
u(x,0) = [mm] 2(1-x)+5sin(3\pi [/mm] x) für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 |
hey :)
hoffe bin hier in dem Unterforum richtig?
Also ich habe folgende Lösung für die Aufgabe und würde nun gerne wissen ob diese stimmt?
Die Funktion [mm] \varphi(x,t) [/mm] = 2(1-x) für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 erfüllt [mm] \varphi(0,t) [/mm] = 2 und [mm] \varphi(1,t) [/mm] = 0. Somit löst eine Funktion u das Problem, falls die transfomierte Funktion [mm] v=u-\varphi [/mm] das Anfangs-Randwertproblem
[mm] \bruch{\partial v}{\partial t}(x,t) [/mm] = [mm] \bruch{\partial^2 v}{\partial x^2}(x,t) [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0
v(0,t) = 2 und v(1,t) = 0 für t [mm] \ge [/mm] 0
v(x,0) = [mm] 5sin(3\pi [/mm] x) für 0 [mm] \le [/mm] x [mm] \le [/mm] 1
löst.
Allerdings ist noch
[mm] \bruch{\partial \varphi }{\partial t}(x,t) [/mm] = [mm] \bruch{\partial^2 \varphi }{\partial x^2}(x,t) [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0
v(x,0)=u(x,0)-2(1-x) für 0 [mm] \le [/mm] x [mm] \le [/mm] 1
zu berücksichtigen.
Sie allgemeine Lösung für v ohne Anfangsbedingung lautet:
[mm] v(x,t)=\sum_{n=1}^{\infty} b_{n}sin(nx)e^{-n^2t} [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0
Die Anfangsbedingung lautet:
[mm] v(x,t)=\sum_{n=1}^{\infty} b_{n}sin(nx) [/mm] =! [mm] 5sin(3\pi [/mm] x) für 0 [mm] \le [/mm] x [mm] \le [/mm] 1
Ein Koeffizientenvergleich liefert nun:
[mm] b_{3}=5 [/mm] und [mm] b_{n} [/mm] = 0 für n [mm] \not= [/mm] 3 beziehungsweise
v(x,t) = [mm] 5sin(3\pi x)e^{-9t} [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0
somit ist die Lösung der Aufgabe:
u(x,t) = [mm] v(x,t)+\varphi(x,t) [/mm] = [mm] 5sin(3\pi x)e^{-9t} [/mm] + 2(1-x) für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0
Stimmt das so?
Bin mir beim Koeffizientenvergleich nicht sicher, weil ich ja ein [mm] 3\pi [/mm] im Sinus steht, wobei ja eigentlich üblich ist das n [mm] \in \IN [/mm] oder?
Und wenn ja; was ändert sich am Ergebnis wenn ich in der Aufgabenstellung nun [mm] \bruch{\partial u}{\partial t}(x,t) [/mm] = 2 [mm] \bruch{\partial^2 u}{\partial x^2}(x,t) [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] 1 , t [mm] \ge [/mm] 0 habe?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:02 Sa 02.01.2016 | Autor: | leduart |
Hallo
ich habe deine Rechnung nur soweit überprüft, dass einsetzen in die Dgl zeigt, dass sie nicht stimmen kann . bist du sicher dass in den Randbed nicht n statt [mm] \pi [/mm] steht mit sin(3x) statt sin [mm] 3\pi*x [/mm] stimmt die Lösung. oder du brauchst [mm] e^{9*\pi^2*t} [/mm] also eine allgemeine Lösung nicht mit n sondern [mm] n*\pi
[/mm]
Gruss ledum
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:07 So 03.01.2016 | Autor: | Teryosas |
> Hallo
> ich habe deine Rechnung nur soweit überprüft, dass
> einsetzen in die Dgl zeigt, dass sie nicht stimmen kann .
> bist du sicher dass in den Randbed nicht n statt [mm]\pi[/mm] steht
> mit sin(3x) statt sin [mm]3\pi*x[/mm] stimmt die Lösung. oder du
> brauchst [mm]e^{9*\pi^2*t}[/mm] also eine allgemeine Lösung nicht
> mit n sondern [mm]n*\pi[/mm]
oh ja gut das war ja der Punkt wo ich mir nicht sicher war wie ich mit dem [mm] \pi [/mm] umgehen soll. Aber mit [mm] e^{-9\pi^2t} [/mm] stimmts jetzt wenn ich das gerade richtig nachgerechnet habe.
Wie würde sich jetzt dann die Lösung verändern wenn ich in in der Aufgabenstellung nun [mm] \bruch{\partial u}{\partial t}(x,t) [/mm] = 2 [mm] \bruch{\partial^2 u}{\partial x^2}(x,t) [/mm] für 0 [mm] \le [/mm] x [mm] \le [/mm] > 1 , t [mm] \ge [/mm] 0 habe?
Was bewirkt die Multiplikation mit 2?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:56 So 03.01.2016 | Autor: | leduart |
Hallo
du machst dasselbe, was ihr wohl onne die 2 gemacht habt Anastz
u=f(x)*g(t) daraus folgt
2f''(x)/f=g'/g= const weil links nut Terme mit x, rechts nur Terme mit t stehen
also hast du die 2 gewöhnlichen Dg
f''=c/2 *f und g'=c*g die man leicht lösen kann und an die lRandbed. anpassen.
Gruß ledum
|
|
|
|