Annäherung an einen Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:22 Di 20.04.2010 | Autor: | goetz |
Aufgabe | Schreiben Sie formal folgende Bedingung auf:
Die Glieder [mm] $a_n (\in \IR)$ [/mm] der Folge [mm] $(a_n)_n$ [/mm] kommen dem Wert $a [mm] (\in \IR)$ [/mm] immer näher. Benutzen Sie dabei Ungleichungszeichen, Betrag und Quantoren. |
Ich habe mir dazu folgende Bedingung ausgedacht:
[mm] $\forall [/mm] n: [mm] a_n [/mm] < a [mm] \wedge |a_n| [/mm] < [mm] |a_{n+1}|$
[/mm]
Aber ich vermute, man kann das auch über eine Differenz ausdrücken, bzw. dadurch genauer machen.
Kann mir jemand ein Feedback zu meinem Ausdruck oder mir ggf. sogar einen Verbesserungsvorschlag geben? Das wäre sehr nett.
Ich habe diese Frage in keinem anderen Forum gepostet.
|
|
|
|
Hallo,
ich glaube bevor Du dir die Wikipedia Definition durchliest, solltest du darüber nachdenken, was du eigentlich ausdrücken willst.
Es geht darum, dass eine Folge unendlich nah an einen bestimmten wert L herankommt, das heißt, dass du für ein [mm] \epsilon>0 [/mm] immer ein Glied der Folge finden kannst, so dass die Folge im Intervall [mm] L\pm\epsilon.
[/mm]
Das heißt, wenn eine Folge konvergiert, dann gibst du mir irgendein [mm] \epsilon, [/mm] egal wie nah an null und ich kann dir ein n nennen, für dass die Folge im Intervall [mm] L\pm\epsilon [/mm] liegt.
Daraus ergibt sich dann eine Definition für die Konvergenz einer Folge, nämlich
Für jedes [mm] \epsilon>0 [/mm] gibt es ein N in den natürlichen zahlen, so das [mm] n\geN [/mm] impliziert, dass [mm] a-\epsilon\le a_{n} \le a+\epsilon [/mm] .
Wie kannst du das mit den schönen Symbolen ausrücken ?
Lg
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:34 Di 20.04.2010 | Autor: | goetz |
Also, ich wollte ja mit meinem Ansatz $ [mm] \forall [/mm] n: [mm] a_n [/mm] < a [mm] \wedge |a_n| [/mm] < [mm] |a_{n+1}| [/mm] $ aussagen, dass jeder Wert der Folge kleiner als $a$ sein soll, sich die Folge aber mit jedem Glied weiter $a$ annähert, indem der Betrag jedes Gliedes [mm] $a_{n+1}$ [/mm] größer ist, als sein Vorgänger. Liegt das Problem mit dieser Aussage darin, dass man sich dem Grenzwert damit quasi nur "von unten" annähern kann?
Und zu Deinem Hinweis:
Ist denn mit $ [mm] a-\epsilon\le a_{n} \le a+\epsilon [/mm] $ nicht bereits alles gesagt? Ich wüsste nicht, wie man das umformulieren sollte, ohne den Sinn zu ändern.
Danke aber schonmal für deinen Hinweis.
|
|
|
|
|
Hallo,
ich bin mir nicht ganz sicher, was es mit deiner definition auf sich hat, aber dass du dich da nur von unten an den Grenzwert näherst stimmt schon. Du sagst im Prinzip die Folge ist für jedes n kleiner als ein bestimmter wert, sie ist also nach oben beschränkt und monoton steigend, dies impliziert konvergenz, das ist wahr. aber die strenge definition von konvergenz ist eine andere. Nämlich genau, was ich dir schrieb. Da reicht es nicht zu sagen die folge ist im intervall Grenzwert plus/minus epsilon. Nein, es geht darum, dass du für jedes [mm] \epsilon>0 [/mm] ein N finden kannst so dass $ n [mm] \ge [/mm] N $ zur folge hat, dass [mm] a_{n} [/mm] in diesem intervall liegt. Du musst das ganze schon sehr gut durchdenken um eine klare definition zu finden, die allgemeine gültigkeit besitzt.
Lg
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:08 Di 20.04.2010 | Autor: | goetz |
Nächste Woche ist wieder Übung, ich hoffe, dass ich danach schlauer bin.
Danke aber für die Hilfe!
|
|
|
|