www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Anwendungen
Anwendungen < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anwendungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Mi 07.01.2009
Autor: MatheNoob123

Hallo,

Ein 60m langer Zaun soll ein möglichst großes rechteckiges Gartengrundstück so umgeben, dass 2m für die Einfahrt frei bleiben.
Wie müssen die Seitenlängen des Rechtecks festgelegt werden?

Mein Ansatz ist:
2*(a+b)=60   ---> a+b=30   ---> a=30-b         (1)

Da ich hier die "möglichst große" Fläche suche, muss es mindestens eine quadratische Funktion sein:
A = f(x) = a*b                                 (2)

Setze (1) in (2):      
A = f(x) = 30b - b²

Ableitung: f'(x) = -2b + 30

Extremstelle: f'(x) = 0 [mm] \gdw [/mm] b = 15

Probe: f''(15) [mm] \not= [/mm] 0   ---> wahre Aussage

Somit sind die Seitenlängen a und b = 15.


Stimmt die Aufgabe so?

MfG
MatheNoob123

        
Bezug
Anwendungen: Toröffnung
Status: (Antwort) fertig Status 
Datum: 12:13 Mi 07.01.2009
Autor: Roadrunner

Hallo MatheNoob!


Du hast die Toröffnung nicht bedacht. Damit gilt nämlich als Nebenbedingung:
$$a+b+(a-2)+b \ = \ 60 \ \ \ [mm] \gdw [/mm] \ \ \ 2*(a+b) \ = \ [mm] 6\red{2}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Anwendungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 Mi 07.01.2009
Autor: MatheNoob123

Dann bekomme ich raus:
a = 14,5
b = 15,5

Meine Lösung kann auch gar nicht stimmen. Es ist von einem Rechteck die Rede und ich bekomme ein Quadrat raus, wobei das wiederrum ein spezielles Rechteck ist. :-)

Vielen Dank!
MfG
MatheNoob123

Bezug
                        
Bezug
Anwendungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 Mi 07.01.2009
Autor: M.Rex

Hallo

> Dann bekomme ich raus:
> a = 14,5
>  b = 15,5
>  
> Meine Lösung kann auch gar nicht stimmen. Es ist von einem
> Rechteck die Rede und ich bekomme ein Quadrat raus, wobei
> das wiederrum ein spezielles Rechteck ist. :-)

Eben. Also ist es egal, wenn das Rechteck sich nachher als Quadrat entpuppt. Denn ein Quadrat ist auch ein Rechteck.

>  
> Vielen Dank!
>  MfG
>  MatheNoob123

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]