Anzahl10-schrittige Wege Ebene < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:39 Di 07.09.2010 | Autor: | natascha |
Aufgabe | (i) Bezüglich der Ereignisse A und B ist bekannt, dass P(A)=0.25, P(B)=0.3 und P(A [mm] \cup B^{c})=0.85. [/mm] Berechnen Sie [mm] P(A|B^{c}).
[/mm]
(ii) Wieviele mögliche 10-schrittige Wege in der Ebene gibt es, um vom Punkt (0,0) zum Punkt (5,5) zu gelangen, falls ein einzelner Schritt entweder um eine Einheit nach rechts oder um eine Einheit senkrecht/vertikal nach oben geht? Wieviele solcher Wege gibt es, falls der Punkt (2,2) nicht passiert werden darf? |
Hallo,
Ich habe ein Problem mit dem Teil (ii) dieser Aufgabe.
(i) habe ich folgendermassen gelöst:
[mm] P(A|B^{c}) [/mm] = [mm] \bruch{P(A \cap B^{c})}{P(B^{c}} [/mm] = 0.1 / 0.7 = 1/7
weil P(A [mm] \cap B^{c}) [/mm] = P(A) + P( [mm] B^{c} [/mm] ) - P(A [mm] \cup B^{c})
[/mm]
Stimmt das so?
(ii) Hier weiss ich irgendwie gar nicht weiter. Ich habe mir das mal aufgezeichnet,und es gibt ja relativ viele Möglichkeiten. Weiss da jemand Rat, wie ich da am besten vorgehe?
Vielen Dank!
Liebe Grüsse,
Natascha
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:01 Di 07.09.2010 | Autor: | Teufel |
Hi!
(i) sieht gut aus.
(ii):
Wege kann man z.B. so durch Wörter beschreiben: ORROORROOR oder RRRRROOOOO, wobei R für rechts und O für oben steht. Diese Wörter müssen ja alle gemeinsan haben, dass jeweils 5mal O und 5mal R vorkommt und dass sie immer eine Länge von 10 haben (folgt alles aus der Aufgabenstellung). Nun ist auch zuerst die Frage, wie viele solcher Wörter es gibt.
Teufel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:21 Di 07.09.2010 | Autor: | natascha |
Ah super, danke! So gesehen macht das alles schon viel mehr Sinn!
Ich rechne also
[mm] \bruch{10!}{5!*5!}, [/mm] weil es ja 10 Buchstaben sind, 5 Mal R und 5 Mal O, und erhalte dann so die Anzahl Anagramme = Anzahl Wege. Richtig?
Für den zweiten Teil muss ich wohl diejenigen berechnen, die nicht durch (2,2) gehen, und dann diese vom oberen Resultat abziehen, oder? Das wären dann die Wörter, die nicht RR00, R00R, R0R0 usw. am Anfang haben?
Grüsse,
Natascha
|
|
|
|
|
Hallo Natascha,
Der erste Teil stimmt. Beim 2ten Teil gehst Du genauso vor, nur daß du jetzt insgesamt nicht 10 Buchstaben sondern 4 Buchstaben hast mit 2 Buchstabenklassen mit jew. Länge 2. Wieviele "Hauptwege" kann man auf diese Weise bilden, die zu (2, 2) führen? Nachdem du diese Anzahl bestimmt hast, mußt Du die restlichen möglichen Verzweigungen nach (2, 2) bestimmen. Dort hast du noch insg. 6 Buchstaben mit 2 Buchstabenklassen von jew. Länge 3 übrig.
Das wären also alle Wege, die durch (2, 2) führen. Jetzt mußt du diese Zahl vom Ergebnis aus dem ersten Teil abziehen.
Viele Grüße
Karl
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:36 Di 07.09.2010 | Autor: | natascha |
> Der erste Teil stimmt. Beim 2ten Teil gehst Du genauso vor,
> nur daß du jetzt insgesamt nicht 10 Buchstaben sondern 4
> Buchstaben hast mit 2 Buchstabenklassen mit jew. Länge 2.
> Wieviele "Hauptwege" kann man auf diese Weise bilden, die
> zu (2, 2) führen? Nachdem du diese Anzahl bestimmt hast,
> mußt Du die restlichen möglichen Verzweigungen nach (2,
> 2) bestimmen. Dort hast du noch insg. 6 Buchstaben mit 2
> Buchstabenklassen von jew. Länge 3 übrig.
> Das wären also alle Wege, die durch (2, 2) führen. Jetzt
> mußt du diese Zahl vom Ergebnis aus dem ersten Teil
> abziehen.
Hallöchen,
[mm] \bruch{4!}{2!2!} [/mm] sind die Anzahl Wege, die nach (2,2) führen.
Die restlichen Buchstaben: [mm] \bruch{6!}{3!3!}
[/mm]
Alle Wege, die durch (2,2) führen, errechnen sich also als:
[mm] \bruch{4!}{2!2!}*\bruch{6!}{3!3!} [/mm] = 120 Wege durch (2,2)
Durch Abzug vom Gesamtergebnis:
252 - 120 = 132 Wege von (1,1) nach (5,5), die nicht durch (2,2) führen. Ist das richtig?
Vielen Dank!
Liebe Grüsse,
Natascha
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:49 Di 07.09.2010 | Autor: | Karl_Pech |
Tja, ich habe mir jetzt mal ein (4,4)-Quadrat ohne den (2,2)-Punkt aufgemalt und habe alle Möglichkeiten durchprobiert. Ich komme immer wieder auf 30 mögliche Wege und nicht auf [mm] $\tfrac{8!}{4!^2}-\left(\tfrac{4!}{2!^2}\right)^2=34$. [/mm] Vielleicht übersehe ich ja 4 Wege oder aber in diesem Ansatz steckt noch irgendwo der Wurm drin... .
|
|
|
|
|
Hallo Karl,
So wie ich das sehe, hast du richtig gerechnet. Hier sind alle möglichen Wege für ein 4x4-Quadrat, die den (2, 2)-Punkt umgehen:
OORORRRO
RRROOORO
ROOOORRR
OROOORRR
ORRROROO
OROORROR
OROORORR
RROROORO
RRORROOO
RROROROO
OOORRROR
OOORORRR
ROOORROR
OORORORR
ROOORRRO
OOOORRRR
OROORRRO
ORRROOOR
RRROOOOR
RRRROOOO
RORROROO
OOROORRR
OOORRORR
RRROROOO
RORROOOR
ORRRROOO
RROROOOR
ORRROORO
RORRROOO
OOORRRRO
RORROORO
OORORROR
ROOORORR
RRROOROO
Gruß V.N.
|
|
|
|
|
Hallo Natascha,
Deine Lösung stimmt.
Gruß V.N.
|
|
|
|
|
Status: |
(Korrektur) fundamentaler Fehler | Datum: | 15:49 Di 07.09.2010 | Autor: | Gonozal_IX |
Huhu,
> (i) sieht gut aus.
äh... nein.
Allein die Zeile:
> Bezüglich der Ereignisse A und B ist bekannt, dass P(A)=0.25, P(B)=0.3 und $ [mm] P(A\cupB^{c})=0.85. [/mm] $
macht keinen Sinn, denn es muss gelten:
$P(A) + [mm] P(A^c) [/mm] = 1$, was hier offensichtlich nicht gilt........... insofern ist die Aufgabe falsch gestellt oder falsch abgetippt.
> $ [mm] P(A|B^{c}) [/mm] $ = $ [mm] \bruch{P(A\capB^{c})}{P(B^{c}} [/mm] $ = 0.1 / 0.7 = 1/7
> weil $ [mm] P(A\capB^{c}) [/mm] $ = P(A) + $ [mm] P(B^{c}) [/mm] $ - $ [mm] P(A\cupB^{c}) [/mm] $
> Stimmt das so?
Warum sollte das gelten??
MFG,
Gono.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:19 Di 07.09.2010 | Autor: | natascha |
Scheinbar wurden die [mm] \cup [/mm] und [mm] \cap [/mm] tags nicht richtig dargestellt, wahrscheinlich wegen der Leerschläge... ich habe jetzt Leerschläge reingemacht und scheinbar wird es jetzt richtig angezeigt...sollte eigentlich stimmen soweit...
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:38 Di 07.09.2010 | Autor: | Gonozal_IX |
Ok, dann passts
MFG,
Gono.
|
|
|
|