[Assembler] 32bit Int < Softwaretechnik+Pro < Praktische Inform. < Hochschule < Informatik < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:00 So 30.01.2011 | Autor: | Parkan |
Hallo
Ich habe eine Funktion die mir die n'te Fibonacci Zahlen ausrechnet. Als Parameter soll ein 32bit Int übergeben werden. Doch es ist keine 32bit CPU vorhanden (sondern 16) sprich, wenn ich ein Wert größer 16 versuche in einem Register zu speichern, dann funktioniert das ganze nicht mehr.
Im Internet habe etwas über aufteilen in obere Bit und untere Bit gelesen und dann mit dem Übertrag arbeiten, doch nicht wirklich verstanden.
Kann jemand hier ein Beispiel zeigen wie man sowas macht? ODer verständlich erklären.
Mfg
Janina
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:23 So 30.01.2011 | Autor: | felixf |
Moin Janina,
> Ich habe eine Funktion die mir die n'te Fibonacci Zahlen
> ausrechnet. Als Parameter soll ein 32bit Int übergeben
> werden. Doch es ist keine 32bit CPU vorhanden (sondern 16)
> sprich, wenn ich ein Wert größer 16 versuche in einem
> Register zu speichern, dann funktioniert das ganze nicht
> mehr.
>
> Im Internet habe etwas über aufteilen in obere Bit und
> untere Bit gelesen und dann mit dem Übertrag arbeiten,
> doch nicht wirklich verstanden.
>
> Kann jemand hier ein Beispiel zeigen wie man sowas macht?
> ODer verständlich erklären.
das ist genauso wie beim schriftlichen Rechnen im Dezimalsystem. Sei dazu $n = 10$, dann hast du ja Ziffern $0, 1, [mm] \dots, [/mm] 9 = [mm] \{ 0, \dots, n - 1 \}$, [/mm] und du kannst eine Zahl darstellen als [mm] $\sum_{i=0}^k a_i 10^i [/mm] = [mm] \sum_{i=0}^k a_i n^i$ [/mm] mit [mm] $a_i \in \{ 0, \dots, n - 1 \}$.
[/mm]
Wenn du jetzt zwei solche Zahlen addierst, dann musst du den Uebertrag beachten: wenn du etwa $18 = 1 [mm] \cdot 10^1 [/mm] + 8 [mm] \cdot 10^0$ [/mm] zu $23 = 2 [mm] \cdot 10^1 [/mm] + 3 [mm] \cdot 10^0$ [/mm] addierst, hast du bei der Einerstelle 8 + 3 = 11, also 1 mit Uebertrag 1. Fuer die Zehnerstelle addierst du nun 1 + 2, und den Uebertrag 1 hinzu. Damit ist das Ergebnis $4 [mm] \cdot 10^1 [/mm] + 1 [mm] \cdot 10^0 [/mm] = 41$.
Jetzt nimm an, dass $n = [mm] 2^{32}$ [/mm] ist. Dann ist so eine Ziffer aus [mm] $\{ 0, 1, \dots, 2^{32} - 1 \}$ [/mm] eine 32-Bit-Zahl. Wenn du also eine 64-Bit-Zahl darstellen willst, brauchst du zwei solche Ziffern. Und beim Addieren kann es genauso vorkommen, dass die Summe der "Einerstellen" groessergleich [mm] $2^{32}$ [/mm] ist und du einen Ueberlauf hast -- und somit einen Uebertrag in die "Zehnerstelle" bekommst.
Wenn ich mich richtig erinnere, heisst der entsprechende x86-Befehl zur Addition mit Uebertrag ADC -- dieser addiert genauso wie ADD, nur addiert er zusaetzlich noch den Wert des Carry-Flags hinzu (und der ist 0 oder 1, und wird von ADD und ADC selber gesetzt falls ein Ueberlauf auftritt).
In x86-Notation: wenn du die Zahl $AX [mm] \cdot 2^{32} [/mm] + BX$ zu $CX [mm] \cdot 2^{32} [/mm] + DX$ addieren willst, schreibst du
1: | ADD DX, BX
| 2: | ADC CX, AX |
Das Ergebnis ist dann $CD [mm] \cdot 2^{32} [/mm] + DX$.
LG Felix
|
|
|
|