www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Astroide
Astroide < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Astroide: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:13 Fr 02.12.2011
Autor: Highchiller

Aufgabe
H20. Die Bahnkurve eines (Peripherie-)Punktes auf dem Rand eines Kreises, der in der Ebene [mm] $\IR^2$ [/mm] im Inneren
eines festen Kreises von vierfachem Radius abrollt, wird eine Astroide genannt.
a) Zeigen Sie: Wenn der feste Kreis der Einheitskreis um den Nullpunkt ist und wenn zu Beginn [mm] ($\phi [/mm] = 0$)
der Peripherie-Punkt des rollenden Kreises gleich $(1; 0)$ ist, wird die Bahn der Astroiden modelliert
durch die Gleichung
[mm] $\gamma [/mm] ( [mm] \phi [/mm] ) = ( [mm] \cos^3( \phi [/mm] ); [mm] \sin^3( \phi [/mm] )$

b) Bestimmen Sie die singulären Punkte der Astroiden sowie ihre Länge.

Um b) gehts mir nicht. Das bekomm ich hin.
Aber a) sorgt für Verständnisprobleme. Ich würde alles verstehen wenn man uns eine Gleichung gegeben hätte. So etwas wie:
$x^(2/3) + y^(2/3) = 1$

Dann könnte ich Zeigen das das Bild der gegebenen Menge mit der Menge der Astroide übereinstimmt. Aber wir haben ja gar nichts.
Ich musste 3 mal lesen um in der Aufgabe überhaupt die AUFGABE raus zu lesen.
Irgendwie weiß ich gar nicht wie ich anfangen soll.

Soll ich mir jetzt eine beschreibung einer Astroide im Internet suchen und zeigen das dieses gamma dieser beschreibung genügt? Das kann ja irgendwo nicht sein.
Oder soll ich etwa rein argumentativ beschreiben, weshalb diese Funktion die Astroide beschreibt?
Ich versteh es nicht.

Vielen Dank schon mal für jeden Anhaltspunkt.
Euer Highchiller

        
Bezug
Astroide: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Sa 03.12.2011
Autor: Al-Chwarizmi


> Die Bahnkurve eines (Peripherie-)Punktes auf dem Rand
> eines Kreises, der in der Ebene [mm]\IR^2[/mm] im Inneren
>  eines festen Kreises von vierfachem Radius abrollt, wird
> eine Astroide genannt.
>  a) Zeigen Sie: Wenn der feste Kreis der Einheitskreis um
> den Nullpunkt ist und wenn zu Beginn ([mm]\phi = 0[/mm])
>  der
> Peripherie-Punkt des rollenden Kreises gleich [mm](1; 0)[/mm] ist,
> wird die Bahn der Astroiden modelliert
>  durch die Gleichung
>  [mm]\gamma ( \phi ) = ( \cos^3( \phi )\,|\, \sin^3( \phi ))[/mm]
>  
> b) Bestimmen Sie die singulären Punkte der Astroiden sowie
> ihre Länge.
>  Um b) gehts mir nicht. Das bekomm ich hin.
>  Aber a) sorgt für Verständnisprobleme. Ich würde alles
> verstehen wenn man uns eine Gleichung gegeben hätte. So
> etwas wie:
>  [mm]x^{(2/3)} + y^{(2/3)} = 1[/mm]
>  
> Dann könnte ich zeigen das das Bild der gegebenen Menge
> mit der Menge der Astroide übereinstimmt. Aber wir haben
> ja gar nichts.
>  Ich musste 3 mal lesen um in der Aufgabe überhaupt die
> AUFGABE raus zu lesen.
>  Irgendwie weiß ich gar nicht wie ich anfangen soll.
>  
> Soll ich mir jetzt eine Beschreibung einer Astroide im
> Internet suchen und zeigen das dieses gamma dieser
> beschreibung genügt? Das kann ja irgendwo nicht sein.

Ja - und das sollte nicht sein.

>  Oder soll ich etwa rein argumentativ beschreiben, weshalb
> diese Funktion die Astroide beschreibt?
>  Ich versteh es nicht.
>  
> Vielen Dank schon mal für jeden Anhaltspunkt.
>  Euer Highchiller


Hallo,

mach dir zunächst einmal Zeichnungen. Zuerst für die
Startposition und für die weiteren Positionen, wo der
auf dem inneren Kreis markierte Punkt P (beim Start
gleich dem Berührungspunkt (1|0) ) wieder den
äußeren Kreis berührt.
Dann eine beliebige Position, wo der Berührungspunkt B
den Polarwinkel [mm] \varphi [/mm] und damit die Koordinaten [mm] (cos(\varphi)\,|\,sin(\varphi)) [/mm]
hat. Mache dir an dieser Zeichnung klar, wie du nun die
Koordinaten des markierten Punktes P durch den Winkel
[mm] \varphi [/mm] ausdrücken kannst. Der Rest sind dann
trigonometrische Umformungen.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]