Aufgabenblatt 2, Aufgabe 2 < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | i Bestimmen Sie die Anzahl der m¨oglichen Relationen auf einer Menge mit drei Elementen !
ii Wie viele davon sind symmetrisch? Wie viele davon sind reflexiv? |
zu Aufgabe 2)
i) Die Anzahl der möglichen Relationen auf einer 3-elementigen Menge beträgt 512.
ii) Symmetrisch bedeutet: Wenn a in Relation zu b steht, dann steht b auch in Relation zu a. Reflexiv bedeutet, dass jedes Element a auch zu sich selbst in Relation steht. Dies zu den Erklärungen von reflexiv und symmetrisch, aber wie finde ich heraus, wie viele der Relationen auf der 3-elementigen Menge diese Kriterien erfüllen ?
Für eine schnelle Antwort wäre ich sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:50 Mo 07.09.2020 | Autor: | chrisno |
Ich habe eine Idee:
Dazu halte ich fest, dass reflexiv heißt, dass für alle Elemente, ich nenne sie a, b und c, gilt, dass aus x ~ x. Also muss a ~ a, b ~ b und c ~ c gelten.
Dieses ist die erste.
Nun können noch weitere Paare dazu kommen: a ~ b, a ~ c, b ~ a, b ~ c, c ~ a, c ~ b.
Diese können in allen möglichen Kombinationen dazu kommen ....
Wenn die Relation reflexiv ist, dann gilt ja: a ~ b -> b ~ a und natürlich auch umgekehrt.
Nun könnte man einfach alle Kombinationen von a ~ b, a ~ c, b ~ a, b ~ c, c ~ a, c ~ b bestimmen und dann das Ergebnis durch 2 teilen. Dazu kommen aber noch die Kombinationen mit den Paaren a ~ a, b ~ b und c ~ c.
|
|
|
|
|
Stell dir vor, du würdest eine (hier) 3x3-Tabelle anlegen. Links am Rand von oben nach unten stehen die Elemente, die vorn im Tupel stehen, oben die, die hinten stehen.
Die Relation stellst du nun durch ein Kreuz dar, z.B.
a b c
a x x
b x
c x
bedeutet, dass (a|a), (a|c), (b|b) und (c|a) eine Relation bilden.
Es sind 9 Felder vorhanden, in jedes kannst du nach belieben ein Kreuz setzen oder nicht. Für jedes Feld hast du 2 Mgl., also gibt es [mm] 2^9 [/mm] verschiedene Tabellen und damit Relationen.
Bei einer nxn-Matrix sind es [mm] 2^{n^2} [/mm] mögliche Relationen.
Reflexiv: Du musst die Hauptdiagonale ankreuzen, es bleiben daher nur [mm] n^2-n [/mm] Felder zur freien Auswahl. Somit [mm] 2^{n^2-n} [/mm] mögliche Relationen.
Symmetrisch: Du kannst nur die Hauptdiagonale und z.B. den Bereich rechts oben davon frei wählen, der Bereich links unten davon ergibt sich automatisch durch Symmetrie. Das gibt dann [mm] \bruch{n^2+n}{2} [/mm] Felder zur freien Auswahl, somit [mm] 2^{\bruch{n^2+n}{2}} [/mm] mögliche Relationen.
Merk dir nicht die Formeln, sondern die Idee. Die Formeln vergisst du schnell wieder, die Idee solltest du behalten können.
|
|
|
|