www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Aufleitungen
Aufleitungen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufleitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 So 13.05.2007
Autor: Engel205

Was sind die Aufleitungen von

1. [mm] nxe^{-nx²} [/mm]

2. [mm] \bruch{1}{1+n(x+1)} [/mm]

????

Bei 1. habe ich raus: [mm] e^{-n²x³} [/mm] Stimmt das?

        
Bezug
Aufleitungen: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 18:05 So 13.05.2007
Autor: Jenni21

Also zu zwei könnte dies die Lösung sein 1/2(1+nx+n)-²

Bezug
        
Bezug
Aufleitungen: Tipps
Status: (Antwort) fertig Status 
Datum: 19:48 So 13.05.2007
Autor: Loddar

Hallo Engel!


Deine Stammfunktion bei der 1. Funktion stimmt nicht. Verwende hier die Substitution $z \ := \ [mm] -n*x^2$ $\Rightarrow$ [/mm]   $z' \ = \ [mm] \bruch{dz}{dx} [/mm] \ = \ -2n*x$ .



Bei der 2. Funktion hilft vielleicht folgende Umformung weiter:

[mm] $f_n(x) [/mm] \ = \ [mm] \bruch{1}{1+n*(x+1)} [/mm] \ = \ [mm] \bruch{1}{1+n*x+n} [/mm]  \ = \ [mm] \bruch{1}{n}*\bruch{n}{n*x + (n+1)}$ [/mm]

Und nun steht im Zähler die Ableitung des Nenners ...


Gruß
Loddar


Bezug
                
Bezug
Aufleitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:00 Mo 14.05.2007
Autor: Engel205

bor mit Substitiution komm ich gar nicht klar....
muss ich danach nochmal substituieren?

Bezug
                        
Bezug
Aufleitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Mo 14.05.2007
Autor: Event_Horizon

Naja, Substitution ist gar nicht sooo schwer. DAs schwierigste ist, eine geeignete zu finden.
Gut, Substitution macht man nicht mal eben blind, man muß schon mal schaun, was genau da passiert. Man darf den Überblick nicht verlieren.





Loddar hat dir ja zu $ [mm] z=-nx^2$ [/mm] geraten.

Das kannst du nach x auflösen und dann in deine Funktion einsetzen.


Allerdings, wenn du integrierst, steht eigentlich noch das dx. Auch das muß zu einem dz werden, und das geht, indem man die Ableitung von z bildet (-> Loddar). Das löst du nach dx auf, als wäre das ein Produkt, und setzt das ebenfalls als Integral ein.

Nun kannst du integrieren, aber da fehlt noch was: Die Grenzen sind ja sowas wie [mm] \integral_{x_1}^{x_2}, [/mm] also auch in "x-Einheiten". Da du aber mit z rechnest, müssen dort die Grenzen auch in "z-Einheiten" stehen. Das ist aber nicht schwer, man steckt die x-Grenzen einfach in $ [mm] z=-nx^2$, [/mm] und erhält die z-Grenzen:

[mm] $z_1=-nx_1^2$ [/mm]

[mm] $z_2=-nx_2^2$ [/mm]

oder auch


[mm] $\integral_{-nx_1^2}^{-nx_1^2}$ [/mm]

Nachdem du also deine Stammfunktion gebildet hast, mußt du DIESE Grenzen benutzen, denn du willst ja x-Werte einsetzen, deine Stammfunktion will aber z-Werte haben.







Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]