www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Ausgangslogik?
Ausgangslogik? < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ausgangslogik?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Do 01.06.2006
Autor: Sancho_Pancho

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo, es geht um nachfolgende aufgabe, weiß nicht wie man da anfangen soll. in der vorlesung hat er nie was von ausgangslogik erzählt, oder meint er aussagenlogik, wohl eher oder? wie kann man sowas denn lösen??

Ein binärer Addierer habe zwei Eingangsleitungen A und B und zwei Ausgangsleitungen C und D. Jede der Eingangsleitungen
kann einen Impuls an den Addierer leiten. Der Addierer rechnet wie folgt:

0 + 0 = 0      1 + 0 = 1
0 + 1 = 1      1 + 1 = 10

Das Ergebnis der Addition wird an die Ausgänge geleitet. Die Leitung C übernimmt die Rolle der niedrigen, die Leitung D die der höheren binären Stelle (Übertrag).

Beschreiben Sie den oben geschilderten Vorgang "Binäres Addieren im Übertrag" mit Hilfe der Ausgangslogik.



danke für eure hilfe!




        
Bezug
Ausgangslogik?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 01.06.2006
Autor: mathiash

Moin Sancho,

bennennen wir die Ausgänge um in S (Summe) und U (Übertrag), so ergibt sich


S= [mm] (A\vee B)\wedge \neg (A\wedge [/mm] B) = [mm] (A\wedge \neq B)\vee (\neg A\wedge [/mm] B)

U= [mm] A\wedge [/mm] B

Gruss,

Mathias

Bezug
                
Bezug
Ausgangslogik?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Do 01.06.2006
Autor: Sancho_Pancho

sorry, aber verstehe das absolut null.

da wir doch von eingangs und ausgangsleitungen geredet.. wie soll man das nur verstehen

was denkt ihr was ist das für ein niveau was er da stellt ist das pippifax oder schwer? hab nur mathe  für betriebswirte eine vorlesung.. und dieser prof macht aber alles anders als die anderen matheprofs der fh..(vom thema her) steig da bald nicht mehr durch

Bezug
                        
Bezug
Ausgangslogik?: ausführliche Erklärung :-P
Status: (Antwort) fertig Status 
Datum: 00:10 Fr 02.06.2006
Autor: Bastiane

Hallo!

> sorry, aber verstehe das absolut null.
>  
> da wir doch von eingangs und ausgangsleitungen geredet..
> wie soll man das nur verstehen
>  
> was denkt ihr was ist das für ein niveau was er da stellt
> ist das pippifax oder schwer? hab nur mathe  für
> betriebswirte eine vorlesung.. und dieser prof macht aber
> alles anders als die anderen matheprofs der fh..(vom thema
> her) steig da bald nicht mehr durch

Mmh - möchtest du jetzt hier drauf eine Antwort haben oder eine auf deine Ausgangsfrage??? Diese Kommentare hier sind meiner Meinung nach nicht so ganz richtig hier an dieser Stelle.

Außerdem hat Mathias die Aufgabe schon ganz simpel gelöst. Zugegeben: er hätte die Vorschau benutzen sollen, dann hätte er vielleicht seinen Tippfehler bemerkt...

Nun ja - schauen wir uns doch nochmal die Additionen an und dann das, was Mathias geschrieben hat. Er hat einen Ausgang "Summe" genannt. Betrachten wir zuerst mal nur diesen Ausgang. Das ist der, der die letzte Stelle der Summe bezeichnet. In deiner "Additionstabelle" ist die letzte Stelle genau dann =0, wenn beide Eingaben =0 sind, oder, wenn beide Eingaben =1 sind. Das nennt man in der Aussagenlogik auch "xor" - siehe auch []XOR. Das muss man aber nicht unbedingt wissen, sondern man kann es auch direkt nur mit "or" und "and" ausdrücken - äquivalent dazu sind die Zeichen [mm] "\vee" [/mm] und [mm] "\wedge". [/mm] Wann also muss unser Ausgang "Summe" =1 sein? Wenn entweder A=1 ist oder B=1 ist (das sind die beiden Additionen 1+0=1 und 0+1=1 zusätzlich aber gilt: es sind nicht sowohl A als auch B =1.
Dass A oder B =1 sein sollen, wird durch [mm] $A\vee [/mm] B$ ausgedrückt, dazu kommt noch (das macht das [mm] \wedge), [/mm] dass nicht A und B gelten darf, das ist in Formeln: [mm] $\neg(A\wedge [/mm] B)$. Und zusammen gibt das dann:

[mm] $(A\vee B)\wedge\neg(A\wedge [/mm] B)$

Wenn man das nun noch weiter umformen möchte, kann man das so machen:

[mm] $(A\vee B)\wedge\neg(A\wedge [/mm] B) [mm] \equiv (A\vee B)\wedge(\neg [/mm] A [mm] \vee \neg [/mm] B) [mm] \equiv \underbrace{(A\wedge\neg A)}_{=0}\vee(A\wedge\neg B)\vee(B\wedge\neg A)\vee\underbrace{(B\wedge\neg B)}_{=0} \equiv (A\wedge\neg B)\vee(B\wedge\neg [/mm] A)$

(hier sind einfach die Gesetze der Aussagenlogik angewand - die findest du notfalls in jeder Formelsammlung :-))

Nun fehlt noch der Ausgang "Übertrag". Mmh - was könnte der wohl bedeuten? Naja, im Fall, dass beide Eingänge =1 sind, wird unser Ergebnis ja zweistellig. Und diese "zweite" Stelle, die in der Schreibweise die erste Stelle ist, denn wir hatten ja gesagt, dass die "Summe" die letzte Stelle darstellt, ist nun genau dann =1, wenn sowohl A als auch B =1 sind. Denn in allen anderen Fällen ist unser Ergebnis ja einstellig, und 0 ist das Gleiche wie 00 und 1, das Gleiche wie 01. Also ist Ausgang "Übertrag" genau dann =1, wenn A und B gelten (d. h. =1 sind), in Formeln:

[mm] $U=A\wedge [/mm] B$

Nun verstanden? Ansonsten frag nochmal genau nach.

Viele Grüße
Bastiane
[cap]


Bezug
                                
Bezug
Ausgangslogik?: Vorschau weiblich
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:45 Fr 02.06.2006
Autor: mathiash

Liebe Bastiane,

es heißt doch '' die Vorschau , oder ?

Deinen Beitrag hätte man auch ''Nächtliche Gedanken zum Addieren'' titulieren können, aber der Smiley  :-P regt
natürlich weitaus mehr die Phantasie an.... [breakdance]

Lieben Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]