www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Aussage beweisen
Aussage beweisen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussage beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Di 08.10.2013
Autor: barneyc

Aufgabe
Beweisen Sie:
arg [mm] (z_{1} z_{2}) [/mm] = arg [mm] (z_{1}) [/mm] + arg [mm] (z_{2}) [/mm] + 2 [mm] \pi [/mm] k für ein k [mm] \in \IZ [/mm]

Hallo,

sorry, dass ich gleich nochmal eine Frage stellen muss, aber die zwei Fragen beschäftigen mich schon seit heute Mittag :(

Ich bin soweit:

arg ( [mm] |z_{1}| e^{i arg (z_{1})} |z_{2}| e^{i arg (z_{2})} [/mm] ) = arg ( [mm] |z_{1} z_{2}| e^{i ( arg (z_{1}) + arg (z_{2}) ) }) [/mm]

Weiter komm ich nicht mehr.
Wäre dankbar um einen kurzen Tipp

mit freundlichen Grüßen und vielen Dank im Voraus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aussage beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 Di 08.10.2013
Autor: abakus


> Beweisen Sie:
> arg [mm](z_{1} z_{2})[/mm] = arg [mm](z_{1})[/mm] + arg [mm](z_{2})[/mm] + 2 [mm]\pi[/mm] k
> für ein k [mm]\in \IZ[/mm]
> Hallo,

>

> sorry, dass ich gleich nochmal eine Frage stellen muss,
> aber die zwei Fragen beschäftigen mich schon seit heute
> Mittag :(

>

> Ich bin soweit:

>

> arg ( [mm]|z_{1}| e^{i arg (z_{1})} |z_{2}| e^{i arg (z_{2})}[/mm] )
> = arg ( [mm]|z_{1} z_{2}| e^{i ( arg (z_{1}) + arg (z_{2}) ) })[/mm]

>

> Weiter komm ich nicht mehr.
> Wäre dankbar um einen kurzen Tipp

>

> mit freundlichen Grüßen und vielen Dank im Voraus

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
aus [mm]z_1=r_1*(cos\phi_1+i*sin\phi_1)[/mm]
und [mm]z_2=r_2*(cos\phi_2+i*sin\phi_2)[/mm] 
folgt
[mm]z_1*z_2=r_1*r_2*(cos\phi_1+i*sin\phi_1)*(cos\phi_2+i*sin\phi_2)[/mm]
[mm]=r_1*r_2*(cos\phi_1*cos\phi_2-sin\phi_1*sin\phi_2)+i*(cos\phi_1*sin\phi_2+sin\phi_1*cos\phi_2)[/mm],
und nach den Additionstheoremen für cos bzw. sin ist das 
[mm] $r_1*r_2*(cos(\phi_1+\phi_2)+i*sin(\phi_1+\phi_2))$. [/mm]
Gruß Abakus
 


 

Bezug
                
Bezug
Aussage beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:35 Di 08.10.2013
Autor: barneyc

Hallo Abakus,

vielen Dank für deine Antwort. Wieso formst du alles in die Sinus-Kosinus Schreibweise um?
Etwa weil du dann den Ausdruck oben in die E-Funktion und den vorderen Teil einsetzen kannst?

So in etwa hab ichs jetzt:

arg (z) = arccos [mm] (\bruch{x}{r}) [/mm]

[mm] \Rightarrow [/mm] arg [mm] (z_{1} z_{2}) [/mm] = arccos( [mm] \bruch{cos(\beta_{1} + \beta_{2})}{\wurzel{cos(\beta_{1} + \beta_{2})^{2}+sin(\beta_{1} + \beta_{2})^{2}}} [/mm] ) = [mm] \beta_{1} [/mm] + [mm] \beta_{2} [/mm] = arg [mm] (z_{1}) [/mm] + arg [mm] (z_{2}) [/mm] +2 [mm] \pi [/mm] k

Fällt [mm] r_{1} r_{2} [/mm] wirklich weg?

vielen Dank im Voraus

Bezug
                        
Bezug
Aussage beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Di 08.10.2013
Autor: abakus


> Hallo Abakus,

>

> vielen Dank für deine Antwort. Wieso formst du alles in
> die Sinus-Kosinus Schreibweise um?

Weil es dafür Additionstheoreme gibt.

> Etwa weil du dann den Ausdruck oben in die E-Funktion und
> den vorderen Teil einsetzen kannst?

>

> So in etwa hab ichs jetzt:

>

> arg (z) = arccos [mm](\bruch{x}{r})[/mm]

>

> [mm]\Rightarrow[/mm] arg [mm](z_{1} z_{2})[/mm] = arccos(
> [mm]\bruch{cos(\beta_{1} + \beta_{2})}{\wurzel{cos(\beta_{1} + \beta_{2})^{2}+sin(\beta_{1} + \beta_{2})^{2}}}[/mm]
> ) = [mm]\beta_{1}[/mm] + [mm]%5Cbeta_%7B2%7D[/mm] = arg [mm](z_{1})[/mm] + arg [mm](z_{2})[/mm] +2
> [mm]\pi[/mm] k

>

> Fällt [mm]r_{1} r_{2}[/mm] wirklich weg?

Das [mm] $r_1r_2$ [/mm] ist der BETRAG des Produkts (und hat mit dem Argument nichts zu tun).
>

> vielen Dank im Voraus

Bezug
                                
Bezug
Aussage beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:25 Di 08.10.2013
Autor: barneyc

Danke für die Antwort.
Dachte in der Definition des Arguments zu arg = arccos ( [mm] \bruch{x}{r} [/mm] )  wäre der Betrag enthalten, da ja r = |z|?
Was verstehe ich da falsch?

Bezug
                                        
Bezug
Aussage beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Di 08.10.2013
Autor: abakus


> Danke für die Antwort.
> Dachte in der Definition des Arguments zu arg = arccos (
> [mm]\bruch{x}{r}[/mm] ) wäre der Betrag enthalten, da ja r = |z|?
> Was verstehe ich da falsch?

In x ist der Betrag auch enthalten, weil x=r*cos[mm]\phi[/mm] gilt.
Damit kürzt sich das r, und deine Gleichung wird zu arg(z)=arccos(cos [mm]\phi[/mm]) .

Bezug
                                                
Bezug
Aussage beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:32 Di 08.10.2013
Autor: barneyc

Super erklärt, jetzt hab ichs verstanden :)
Vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]