Banach Alaoglou < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Wenn ich auf [mm] $L^\infty$ [/mm] die schwache-stern betrachte, dann weiss ich, dass jeder Ball [mm] $B_n$ [/mm] mit Radius $n$ kompakt ist. Wieso ist aber folgende Teilmenge ebenfalls kompakt?
[mm] $B_n\cap L^\infty_+$
[/mm]
wobei [mm] $L^\infty_+$ [/mm] einfach alle [mm] $f\in L^\infty$ [/mm] sind mit [mm] $f\ge [/mm] 0$. Ich kenne den Satz: Wenn $A$ kompakt ist und $B$ abgeschlossen, so ist [mm] $A\cap [/mm] B$ kompakt. Das Problem ist, wieso ist [mm] $L^\infty_+$ [/mm] abgeschlossen in der schwachen-stern Topologie?
Danke für eure Hilfe
Liebe Grüsse
marianne
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:47 Mo 17.06.2013 | Autor: | felixf |
Moin marianne!
> Wenn ich auf [mm]L^\infty[/mm] die schwache-stern betrachte, dann
Du meinst vermutlich, dass du auf [mm] $(L^1)^\ast$, [/mm] was isomorph zu [mm] $L^\infty$ [/mm] ist, die schwache-Stern-Topologie betrachtest. Oder?
> weiss ich, dass jeder Ball [mm]B_n[/mm] mit Radius [mm]n[/mm] kompakt ist.
> Wieso ist aber folgende Teilmenge ebenfalls kompakt?
>
> [mm]B_n\cap L^\infty_+[/mm]
>
> wobei [mm]L^\infty_+[/mm] einfach alle [mm]f\in L^\infty[/mm] sind mit [mm]f\ge 0[/mm].
> Ich kenne den Satz: Wenn [mm]A[/mm] kompakt ist und [mm]B[/mm] abgeschlossen,
> so ist [mm]A\cap B[/mm] kompakt. Das Problem ist, wieso ist
> [mm]L^\infty_+[/mm] abgeschlossen in der schwachen-stern Topologie?
Versuch es doch mal nachzupruefen! Wie ist die schwache-Stern-Topologie definiert? Was musst du nachpruefen, damit eine Menge bzgl. dieser abgeschlossen ist?
Und, was du dazu auch brauchst: wie sieht der Isomorphismus [mm] $(L^1)^\ast \cong L^\infty$ [/mm] aus?
LG Felix
|
|
|
|
|
Guten Tag Felix
Genau, ich betrachte [mm] $L^\infty$ [/mm] als den Dualraum von [mm] $L^1$. [/mm] Ich glaube, dass ich es zeigen konnte: Wenn ich irgendeine [mm] $g\in L^1_+$ [/mm] nehme, dann gilt: (beachte [mm] $\phi_g(f):=\langle f,g\rangle [/mm] = [mm] \int [/mm] fg$ für [mm] $f\in L^\infty,g\in L^1$. [/mm]
[mm] $A:=\{f\in L^\infty: \int fg \ge 0\}:=\phi_g^{-1}([0,\infty))$
[/mm]
Da $g>0$ ist, entspricht dies genau der Menge [mm] $L^\infty_+$. [/mm] Somit ist dies schwach-stern abgeschlossen. Richtig?
Liebe Grüsse
marianne
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:06 Mo 17.06.2013 | Autor: | felixf |
Moin marianne,
> Genau, ich betrachte [mm]L^\infty[/mm] als den Dualraum von [mm]L^1[/mm]. Ich
> glaube, dass ich es zeigen konnte: Wenn ich irgendeine [mm]g\in L^1_+[/mm]
> nehme, dann gilt: (beachte [mm]\phi_g(f):=\langle f,g\rangle = \int fg[/mm]
> für [mm]f\in L^\infty,g\in L^1[/mm].
>
> [mm]A:=\{f\in L^\infty: \int fg \ge 0\}:=\phi_g^{-1}([0,\infty))[/mm]
>
> Da [mm]g>0[/mm] ist, entspricht dies genau der Menge [mm]L^\infty_+[/mm].
> Somit ist dies schwach-stern abgeschlossen. Richtig?
das ist jetzt aber ein rechtes Durcheinander. Sei [mm] $\phi_g(f) [/mm] = [mm] \int [/mm] fg$ fuer $g [mm] \in L^\infty$ [/mm] und $f [mm] \in L^1$; [/mm] dann ist durch [mm] $\Phi [/mm] : g [mm] \mapsto \phi_g$ [/mm] der Isomorphismus [mm] $L^\infty \to (L^1)^\ast$ [/mm] gegeben.
Nun betrachte die Eigenschaft $g [mm] \ge [/mm] 0$ (fast ueberall). Diese ist aequivalent zu [mm] $\int [/mm] f g [mm] \ge [/mm] 0$ fuer alle $f [mm] \ge [/mm] 0$, $f [mm] \in L^1$ [/mm] -- nimm z.B. $f$ als verschiedene Indikatorfunktionen von Mengen mit endlichem Mass.
Die Menge [mm] $L^\infty_+$ [/mm] entspricht also in [mm] $(L^1)^\ast$ [/mm] der Menge $A := [mm] \{ \varphi \in (L^1)^\ast \mid \varphi(f) \ge 0 \text{ fuer alle } f \in L^1 \}$. [/mm] Jetzt musst du zeigen, dass $A$ bzgl. der schwachen-Stern-Topologie auf [mm] $(L^1)^\ast$ [/mm] abgeschlossen ist.
LG Felix
|
|
|
|
|
Hallo Felix
Danke für deine Geduld. Ich weiss, dass jedes stetige lineare Funktional auf [mm] $L^1$ [/mm] geschrieben werden kann als [mm] $\phi_g(f)=\int [/mm] fg $ für ein [mm] $g\in L^\infty$. [/mm] Also ist [mm] $\phi(f)\ge [/mm] 0$ äquivalent zu [mm] $\int [/mm] fg [mm] \ge [/mm] 0$ was wiederum äquivalent zu [mm] $g\ge [/mm] 0$ ist. Die schwache-stern Topologie wird ja durch die Menge $ [mm] A(g,U):=\{f\in L^\infty: \int f g\subset U\}$. [/mm] Wenn ich jetzt [mm] $U=[0,\infty)$ [/mm] wähle und $g$ irgendeine Funktion in [mm] $L^1_+$, [/mm] dann ist doch dies gerade die Menge [mm] $L^\infty_+$, [/mm] also schwach-stern abgeschlossen. Oder nicht?
Liebe Grüsse
marianne88
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Do 18.07.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|