www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Banachsche Fixpunktsatz
Banachsche Fixpunktsatz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachsche Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 So 02.05.2010
Autor: Docci

Aufgabe
Sei [mm] f:\IR\to\IR [/mm] eine differenzierbare Funktion, die eine der beiden folgenden Eigenschaften besitzt:
(i) [mm] |f'(x)|\le\alpha [/mm] oder (ii) [mm] f'(x)\ge\beta [/mm]
für [mm] x\in\IR [/mm] mit festen Konstanten [mm] 0<\alpha<1 [/mm] und [mm] \beta>1 [/mm]
Zeigen Sie mit dem Banachschen Fixpunktsatz, dass die Gleichung f(x)=x in beiden Fällen genau eine Lösung [mm] x\in\IR [/mm] besitzt

Hallo!
ich weiß, dass es normalerweise üblich ist eigene Lösungsansätze oder Ideen anzubringen, aber bei dieser Aufgabe fehlen mir leider jegliche Ideen. Ich hoffe Ihr könnt mir weiterhelfen!

MfG
Doc

        
Bezug
Banachsche Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 So 02.05.2010
Autor: SEcki


>  ich weiß, dass es normalerweise üblich ist eigene
> Lösungsansätze oder Ideen anzubringen, aber bei dieser
> Aufgabe fehlen mir leider jegliche Ideen. Ich hoffe Ihr
> könnt mir weiterhelfen!

1. Fall: die Funktion ist Lipschitz-stetig. Mit welcher Konstante? Was sagt uns der BNF?

2. Fall: wende 1. auf die umkehr-Funktion von f an.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]