Basis aus Eigenvek. von End(V) < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:17 Mi 15.05.2013 | Autor: | woohoo |
Aufgabe | Zeigen Sie: Ist K ein Koerper und V ein endlichdimensionaler K-Vektorraum, M [mm] \subseteq [/mm] End(V) eine kommutative Unteralgebra, so dass alle Elemente von M diagonalisierbar sind, so besitzt V eine Basis aus simultanen Eigenvektoren der Elemente von M. |
Hallo,
Leider weiss ich nicht so genau was man hier fuer einen Ansatz waehlen sollte. Ich verstehe nicht was mit "...Basis aus simultanen Eigenvektoren der Elemente von M" gemeint ist.
Soll man eine Basis fuer V finden, die aus Eigenvektoren [mm] v_i [/mm] besteht wobei diese [mm] v_i [/mm] Eigenwerte von ALLEN elementen in End(V) sind? Das ergibt fuer mich irgendwie keinen Sinn.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:25 Mi 15.05.2013 | Autor: | fred97 |
> Zeigen Sie: Ist K ein Koerper und V ein
> endlichdimensionaler K-Vektorraum, M [mm]\subseteq[/mm] End(V) eine
> kommutative Unteralgebra, so dass alle Elemente von M
> diagonalisierbar sind, so besitzt V eine Basis aus
> simultanen Eigenvektoren der Elemente von M.
> Hallo,
>
> Leider weiss ich nicht so genau was man hier fuer einen
> Ansatz waehlen sollte. Ich verstehe nicht was mit "...Basis
> aus simultanen Eigenvektoren der Elemente von M" gemeint
> ist.
>
> Soll man eine Basis fuer V finden, die aus Eigenvektoren
> [mm]v_i[/mm] besteht wobei diese [mm]v_i[/mm] Eigenwerte von ALLEN elementen
> in End(V) sind? Das ergibt fuer mich irgendwie keinen
> Sinn.
Dieser Satz hat auch keinerlei Sinn !
Sei dim(V)=n. Du sollst zeigen: es gibt eine Basis [mm] b_1,...,b_n [/mm] von V mit der Eigenschaft:
ist [mm] \phi \in [/mm] M, so sind alle [mm] b_1,...,b_n [/mm] Eigenvektoren von [mm] \phi.
[/mm]
FRED
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
|
|
|
|
|
Status: |
(Frage) überfällig | Datum: | 14:05 Do 16.05.2013 | Autor: | woohoo |
Ok,
Da fuer f [mm] \in [/mm] M gilt, dass f diagonalisierbar ist, bilden die Eigenvektoren einen Basis von V. Wie genau kann ich jetzt zeigen, dass ein anderes g [mm] \in [/mm] M die selben Eigenvektoren hat (das ist doch was ich zeigen muss glaube ich)?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 So 19.05.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|