Basiswechsel/Darstellungsmatri < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:32 Sa 26.09.2015 | Autor: | D-C |
Aufgabe | Bestimme die Matrix des Basiswechsels von der Basis
[mm] E=\{\vektor{1 \\ 0 \\ 0}\vektor{0 \\ 1 \\ 0}\vektor{0 \\ 0 \\ 1} \}
[/mm]
zur Basis
[mm] X=\{\vektor{0 \\ 1 \\ 1}\vektor{1 \\ 0 \\ 1}\vektor{1 \\ 1 \\ 0} \}
[/mm]
Bestimme weiterhin die Darstellungsmatrix [mm] A_{g,X,X} [/mm] der Abbildung g: [mm] \IR^3 [/mm] -> [mm] \IR^3 [/mm] welche durch
[mm] A_{g,E,E} [/mm] = [mm] \pmat{ 1 & 8 &3 \\ 2 & 0 & 2 \\ 1 & 1 & 0}
[/mm]
gegeben ist. |
Hallo.
f( [mm] \vektor{1 \\ 0 \\ 0} [/mm] ) = [mm] \vektor{1 \\ 0 \\ 0} [/mm] = -1/2 [mm] \vektor{0 \\ 1 \\ 1} [/mm] +1/2 [mm] \vektor{1 \\ 0 \\ 1} +1/2\vektor{1 \\ 1 \\ 0}
[/mm]
f( [mm] \vektor{0 \\ 1 \\ 0} [/mm] ) = [mm] \vektor{0 \\ 1 \\ 0} [/mm] = 1/2 [mm] \vektor{0 \\ 1 \\ 1} [/mm] -1/2 [mm] \vektor{1 \\ 0 \\ 1} +1/2\vektor{1 \\ 1 \\ 0}
[/mm]
f( [mm] \vektor{0 \\ 0 \\ 1} [/mm] ) = [mm] \vektor{0 \\ 0 \\ 1} [/mm] = 1/2 [mm] \vektor{0 \\ 1 \\ 1} [/mm] +1/2 [mm] \vektor{1 \\ 0 \\ 1} -1/2\vektor{1 \\ 1 \\ 0}
[/mm]
[mm] A_{E,X} [/mm] = [mm] \pmat{ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2}
[/mm]
f( [mm] \vektor{0 \\ 1 \\ 1} [/mm] ) = [mm] \vektor{0 \\ 1 \\ 1} [/mm] = 0 [mm] \vektor{1 \\ 0 \\ 0} [/mm] +1 [mm] \vektor{0 \\ 1 \\ 0} +1\vektor{0 \\ 0 \\ 1}
[/mm]
f( [mm] \vektor{1 \\ 0 \\ 1} [/mm] ) = [mm] \vektor{1 \\ 0 \\ 1} [/mm] = 1 [mm] \vektor{1 \\ 0 \\ 0} [/mm] +0 [mm] \vektor{0 \\ 1 \\ 0} +1\vektor{0 \\ 0 \\ 1}
[/mm]
f( [mm] \vektor{1 \\ 1 \\ 0} [/mm] ) = [mm] \vektor{1 \\ 1 \\ 0} [/mm] = 1 [mm] \vektor{1 \\ 0 \\ 0} [/mm] +1 [mm] \vektor{0 \\ 1 \\ 0} +0\vektor{0 \\ 0 \\ 1}
[/mm]
[mm] A_{X,E} [/mm] = [mm] \pmat{ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0}
[/mm]
Bis hierhin hoffe ich mal ist es richtig.
Beim nächsten Schritt bin ich nicht ganz sicher , ob ich in der richtigen Reihenfolge multipliziert habe, oder ich doch zuerst die andere Matrix nehmen muss !? :
[mm] A_{X,E} [/mm] * [mm] A_{g,E,E} [/mm] = [mm] \pmat{ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0} [/mm] * [mm] \pmat{ 1 & 8 &3 \\ 2 & 0 & 2 \\ 1 & 1 & 0} [/mm] = [mm] \pmat{ 3 & 1 &2 \\ 2 & 9 & 3 \\ 3 & 8 & 5}
[/mm]
[mm] \pmat{ 3 & 1 &2 \\ 2 & 9 & 3 \\ 3 & 8 & 5} [/mm] * [mm] \pmat{ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2} [/mm] = [mm] \pmat{ 0 & 2 & 1 \\ 5 & -2 & 4 \\ 5 & 0 & 3} [/mm] = [mm] A_{g,X,X}
[/mm]
Gruß
D-C
|
|
|
|
> Bestimme die Matrix des Basiswechsels von der Basis
> [mm]E=\{\vektor{1 \\ 0 \\ 0}\vektor{0 \\ 1 \\ 0}\vektor{0 \\ 0 \\ 1} \}[/mm]
>
> zur Basis
> [mm]X=\{\vektor{0 \\ 1 \\ 1}\vektor{1 \\ 0 \\ 1}\vektor{1 \\ 1 \\ 0} \}[/mm]
>
> Bestimme weiterhin die Darstellungsmatrix [mm]A_{g,X,X}[/mm] der
> Abbildung g: [mm]\IR^3[/mm] -> [mm]\IR^3[/mm] welche durch
> [mm]A_{g,E,E}[/mm] = [mm]\pmat{ 1 & 8 &3 \\ 2 & 0 & 2 \\ 1 & 1 & 0}[/mm]
>
> gegeben ist.
>
> Hallo.
>
> f( [mm]\vektor{1 \\ 0 \\ 0}[/mm] ) = [mm]\vektor{1 \\ 0 \\ 0}[/mm] = -1/2
> [mm]\vektor{0 \\ 1 \\ 1}[/mm] +1/2 [mm]\vektor{1 \\ 0 \\ 1} +1/2\vektor{1 \\ 1 \\ 0}[/mm]
>
> f( [mm]\vektor{0 \\ 1 \\ 0}[/mm] ) = [mm]\vektor{0 \\ 1 \\ 0}[/mm] = 1/2
> [mm]\vektor{0 \\ 1 \\ 1}[/mm] -1/2 [mm]\vektor{1 \\ 0 \\ 1} +1/2\vektor{1 \\ 1 \\ 0}[/mm]
>
> f( [mm]\vektor{0 \\ 0 \\ 1}[/mm] ) = [mm]\vektor{0 \\ 0 \\ 1}[/mm] = 1/2
> [mm]\vektor{0 \\ 1 \\ 1}[/mm] +1/2 [mm]\vektor{1 \\ 0 \\ 1} -1/2\vektor{1 \\ 1 \\ 0}[/mm]
Hallo,
>
> [mm]A_{E,X}[/mm] = [mm]\pmat{ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2}[/mm]
das ist die Matrix,die den Wechsel von E nach X beschreibt,
>
> f( [mm]\vektor{0 \\ 1 \\ 1}[/mm] ) = [mm]\vektor{0 \\ 1 \\ 1}[/mm] = 0
> [mm]\vektor{1 \\ 0 \\ 0}[/mm] +1 [mm]\vektor{0 \\ 1 \\ 0} +1\vektor{0 \\ 0 \\ 1}[/mm]
>
> f( [mm]\vektor{1 \\ 0 \\ 1}[/mm] ) = [mm]\vektor{1 \\ 0 \\ 1}[/mm] = 1
> [mm]\vektor{1 \\ 0 \\ 0}[/mm] +0 [mm]\vektor{0 \\ 1 \\ 0} +1\vektor{0 \\ 0 \\ 1}[/mm]
>
> f( [mm]\vektor{1 \\ 1 \\ 0}[/mm] ) = [mm]\vektor{1 \\ 1 \\ 0}[/mm] = 1
> [mm]\vektor{1 \\ 0 \\ 0}[/mm] +1 [mm]\vektor{0 \\ 1 \\ 0} +0\vektor{0 \\ 0 \\ 1}[/mm]
>
> [mm]A_{X,E}[/mm] = [mm]\pmat{ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0}[/mm]
und das ist die Matrix, die den Wechsel von X nach E beschreibt.
Diese Matrix ist immer sehr leicht aufzustellen, wenn E die Standardbasis ist.
Wenn Du sie invertierst, bekommst den Basiswechsel in der anderen Richtung.
>
> Bis hierhin hoffe ich mal ist es richtig.
Ja.
> Beim nächsten Schritt bin ich nicht ganz sicher , ob ich
> in der richtigen Reihenfolge multipliziert habe, oder ich
> doch zuerst die andere Matrix nehmen muss !? :
Andersrum! Wir müssen ja von rechts nach links denken. Was man zuerst tut, steht am weitesten rechts:
zuerst wandeln wir X-Vektoren in E Vektoren um: [mm] A_{X,E},
[/mm]
auf diese E-Vektoren lassen wir die Abbildung g los:
[mm] A_{g,E,E}*A_{X,E}.
[/mm]
Jetzt haben wir E-Vektoren, die am Ende in X-Vektoren umgewandelt werden:
[mm] A_{E,X}A_{g,E,E}*A_{X,E}=A_{g,X,X}.
[/mm]
LG Angela
>
> [mm]A_{X,E}[/mm] * [mm]A_{g,E,E}[/mm] = [mm]\pmat{ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0}[/mm]
> * [mm]\pmat{ 1 & 8 &3 \\ 2 & 0 & 2 \\ 1 & 1 & 0}[/mm] = [mm]\pmat{ 3 & 1 &2 \\ 2 & 9 & 3 \\ 3 & 8 & 5}[/mm]
>
> [mm]\pmat{ 3 & 1 &2 \\ 2 & 9 & 3 \\ 3 & 8 & 5}[/mm] * [mm]\pmat{ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2}[/mm]
> = [mm]\pmat{ 0 & 2 & 1 \\ 5 & -2 & 4 \\ 5 & 0 & 3}[/mm] = [mm]A_{g,X,X}[/mm]
>
>
>
> Gruß
> D-C
|
|
|
|