www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basiswechsel/Trans.Matrizen
Basiswechsel/Trans.Matrizen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel/Trans.Matrizen: Tipp | Erklärung
Status: (Frage) beantwortet Status 
Datum: 21:41 Sa 22.03.2014
Autor: Kletteraffe

Aufgabe
(Hauptaufgabe)
Für $n [mm] \geq [/mm] 0$, haben wir den UVR [mm]\mathbb{Q}[t]_n[/mm] des [mm] $\mathbb{Q}$-VR [/mm] der Polynome [mm]\mathbb{Q}[t][/mm],
[mm]\mathbb{Q}[t]_n := \{ p(t) \in \mathbb{Q}[t] : [/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Grad(p(t)) $\leq n \}$.
Wir betrachten den $\mathbb{Q}$-VR [mm]V := \mathbb{Q}[t]_3[/mm] mit der Basis $A = (1, t, [mm] t^2, t^3)$ [/mm] sowie den VR [mm]W := \mathbb{Q}[t]_2[/mm] mit der Basis
[mm]B = (1, t, t^2)[/mm]. Weiterhin betrachten wir die lineare Abildung $$D: V [mm] \rightarrow [/mm] W$$ $$D(p(t)) = p'(t) + 2p''(t).$$
(Aufgabe an der ich arbeite)
Sei $C$ die Basis $(1-t, [mm] t-t^2, t^2, t^3)$ [/mm] für $V$ und sei $D$ die Basis $(1+t, [mm] t+t^2, t^2)$ [/mm] für $W$. Finden Sie invertierbare Matrizen $S [mm] \in \mathbb{Q}^{3 \times 3}$ [/mm] und $T [mm] \in \mathbb{Q}^{4 \times 4}$, [/mm] sodass [mm] $M^C_D [/mm] (D) = S [mm] M^A_B [/mm] (D) T$.

Hallo zusammen,

ich bearbeite gerade meine alte Klausur nach und komme bei dieser Aufgabe nicht weiter. Die Matrix [mm] $M^A_B [/mm] (D)$ habe ich bereits berechnet. Nun dachte ich mir, dass ich einfach [mm] $M^C_A [/mm] (D)$ sowie [mm] $M^B_D [/mm] (D)$ berechne und dann mit [mm] $M^C_D [/mm] (D) = [mm] M^B_D [/mm] (D) [mm] M^A_B [/mm] (D) [mm] M^C_A [/mm] (D)$ fertig bin.

Nun sind [mm] $M^C_A [/mm] (D)$ und [mm] $M^B_D [/mm] (D)$ leider nicht invertierbar.. und die Bearbeitung wurde als falsch angestrichen. (ohne weiteren Kommentar)

Habe ich mich verrechnet? (also ist zumindest die Vorgehensweise richtig?)

Oder geht man generell anders an solche Aufgaben heran?

Vielen Dank schonmal! :)

        
Bezug
Basiswechsel/Trans.Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 22.03.2014
Autor: Sax

Hi,

S und T sind Basiswechselmatrizen, also Darstellungen der Identischen Abbildung I von W bzw. V bezüglich verschiedener Basen, sie haben mit D gar nichts zu tun.
Dabei rechnet T die Koordinaten eines Polynoms p aus V bzgl. der Basis C in solche bzgl. der Basis A um. Damit kann dann $ [mm] M^A_B [/mm] (D) $ weiterarbeiten und liefert die Koordinaten von D(p) bzgl der Basis B. Diese werden schließlich von S in Koordinaten bzgl. der Basis D umgerechnet.
Es ist also  $ T = [mm] M^C_A (I_4) [/mm] $ und $ S = [mm] M^B_D (I_3) [/mm] $

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]