www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bayes Formel+ Bedingten W'keit
Bayes Formel+ Bedingten W'keit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bayes Formel+ Bedingten W'keit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:01 Mi 31.12.2014
Autor: LGS

Aufgabe
Nehmen wir an,dass $80 [mm] \% [/mm] $ der Studierenden,deren Name auf einer abgegebenen Bearbeitung eines Übungsblatts erscheinen,die gelösten Aufgaben selbst bearbeitet haben, und dass [mm] $75\%$ [/mm] diese Studierenden die Klausur zur Vorlesung im $1.$Versuch bestehen.Die restlichen $20 [mm] \%$der [/mm] Studierenden haben sich nur auf die Abgabe von jemand anderes mit drauf schreiben lassen,ohne die Aufgaben anzusehen. Nehmen wir an,dass $10 [mm] \%$ [/mm] der letzeren Studiernden die Klausur im $1.$Versuch bestehen. Betrachten sie die Ereignisse

$A:" $ Studierender hat die Aufgabe selbst bearbeitet.$"$
$B:" $ Studierender hat die Klausur im 1.Verusch bestanden.$"$

$a)$Welche der Wahrscheinlichkeiten [mm] $P(A),P(A^c),P(B),P(B^c),P(A|B),P(A^c|B),P(A|B^c),P(A^c|B^c),P(B|A),P(B|A^c),P(B^c|A)$und $P(B^c|A^c)$ [/mm] sind im Text gegeben?
Geben sie die Wahrscheinlichkeiten an.

$b) $Berechnen sie die anderen Wahrscheinlichkeiten (in angemessener Reihenfolge)

$c)$Beschreiben sie die [mm] Wahrscheinlichkeiten$P(B^c|A)$ [/mm] und [mm] $P(B|A^c)$verbal. [/mm]

aufgabe a)

im Text


$P(A) = 80/100$
$P() = 75/100$
[mm] $P(A^c) [/mm] = 20/100$
$ P () = 10/100$
$ P(B|A) =75/100$
$ [mm] P(B|A^C)=10/100$ [/mm]  

bei $P() = 75/100$ und   $ P () = 10/100$ weiss ich nicht was da hin kommt denn


$b) $


$1. P(B) = 0,1+0,75 = 0,85 = [mm] 85\%$ [/mm]

$ [mm] P(B^c)= [/mm] 1-P(B) = 1-0,85= 0,15 = 15 [mm] \%$ [/mm]


jetzt via Formel von Bayes

die lautet $ P(A|B) = [mm] \frac{P(B|A)*P(A)}{P(B)}$ [/mm]



$ P(A|B) = [mm] \frac{\frac{75}{80}*0,8}{0,15}= [/mm] 88,24 %$

$ [mm] P(A^c|B) [/mm] = [mm] \frac{\frac{10}{20}*0,8}{0,15}= [/mm] 11,76$



aus diesen Berechnung folgere ich ,dass die von mir oben nicht gelösten aufgaben irgendwas [mm] mit$P(A|B^c), P(A^c|B^c),P(B^c|A),P(B^c|A^c)$ [/mm]


fröhliche grüße


lgs

        
Bezug
Bayes Formel+ Bedingten W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 Mi 31.12.2014
Autor: hanspeter.schmid


> Nehmen wir an,dass [mm]80 \%[/mm] der Studierenden,deren Name auf
> einer abgegebenen Bearbeitung eines Übungsblatts
> erscheinen,die gelösten Aufgaben selbst bearbeitet haben,
> und dass [mm]75\%[/mm] dieser Studierenden die Klausur zur Vorlesung
> im [mm]1.[/mm]Versuch bestehen.Die restlichen [mm]20 \%[/mm]der Studierenden
> haben sich nur auf die Abgabe von jemand anderes mit drauf
> schreiben lassen,ohne die Aufgaben anzusehen. Nehmen wir
> an,dass [mm]10 \%[/mm] der letzeren Studiernden die Klausur im
> [mm]1.[/mm]Versuch bestehen. Betrachten sie die Ereignisse
>  
> [mm]A:"[/mm] Studierender hat die Aufgabe selbst bearbeitet.[mm]"[/mm]
>  [mm]B:"[/mm] Studierender hat die Klausur im 1.Verusch bestanden.[mm]"[/mm]
>  
> [mm]a)[/mm]Welche der Wahrscheinlichkeiten
> [mm]P(A),P(A^c),P(B),P(B^c),P(A|B),P(A^c|B),P(A|B^c),P(A^c|B^c),P(B|A),P(B|A^c),P(B^c|A)[/mm]und
> [mm]P(B^c|A^c)[/mm] sind im Text gegeben?
>  Geben sie die Wahrscheinlichkeiten an.
>  
> [mm]b) [/mm]Berechnen sie die anderen Wahrscheinlichkeiten (in
> angemessener Reihenfolge)
>  
> [mm]c)[/mm]Beschreiben sie die Wahrscheinlichkeiten[mm]P(B^c|A)[/mm] und
> [mm]P(B|A^c)[/mm]verbal.
>  aufgabe a)
>  
> im Text
>
>
> [mm]P(A) = 80/100[/mm]
>  [mm]P() = 75/100[/mm]

Vorsicht! Es heisst "und dass [mm]75\%[/mm] dieser Studierenden", also geht es nur um die Studierenden, welche die Klausur selber bearbeitet haben, und das sind [mm]75\%[/mm] von [mm]80\%[/mm], also

$P(?|?) = [mm] \frac{75}{100}\frac{80}{100}=0.6$ [/mm]

Kannst Du nun die $?$ in $P(?|?)$ ergänzen?

>  [mm]P(A^c) = 20/100[/mm]
>  [mm]P () = 10/100[/mm]

Und wieder geht es hier um "[mm]10 \%[/mm] der letzeren Studiernden", also

$P(?|?) = [mm] \frac{10}{100}\frac{20}{100}=0.02$ [/mm]

Versuch mal, von dem Punkt aus alle anderen W'keiten auszurechnen., zuerst jene, die ohne Bayes gehen.

Gruss,
Hanspeter

Bezug
                
Bezug
Bayes Formel+ Bedingten W'keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Do 01.01.2015
Autor: LGS

$ P(?|?) = [mm] \frac{75}{100}\frac{80}{100}=0.6 [/mm] $ wäre ja dann $ P(A|B) = [mm] \frac{75}{100}\frac{80}{100}=0.6 [/mm] $


weil haben die Klausur im 1.Versuch bestanden und alle aufgaben selbst gemacht


$ [mm] P(A^c|B) [/mm] = [mm] \frac{10}{100}\frac{20}{100}=0.02 [/mm] $


haben die Aufgaben nicht selbst bearbeitet und dennoch im 1.Versuch bestanden.


ich weis nicht,ob diese Annahmen richtig sind,daher wollte ich diese zuerst klären und nacher den rest ausrechnen



liebe gruß und frohes neues jahr dir hanspeter

lgs

Bezug
                        
Bezug
Bayes Formel+ Bedingten W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Do 01.01.2015
Autor: hanspeter.schmid


> [mm]P(?|?) = \frac{75}{100}\frac{80}{100}=0.6[/mm] wäre ja dann
> [mm]P(A|B) = \frac{75}{100}\frac{80}{100}=0.6[/mm]
>
>
> weil haben die Klausur im 1.Versuch bestanden und alle
> aufgaben selbst gemacht
>  
>
> [mm]P(A^c|B) = \frac{10}{100}\frac{20}{100}=0.02[/mm]
>  
>
> haben die Aufgaben nicht selbst bearbeitet und dennoch im
> 1.Versuch bestanden.

Und nun habe ich Dich in die Irre geführt. Das tut mir sehr leid! Dies hier wären $P(AB)$ und $P(A^cB)$, aber die interessieren Dich ja nicht. Ignorier diese Abzweigung der Diskussion, bitte. Ich mache gleich bei der ersten Frage weiter.



Bezug
        
Bezug
Bayes Formel+ Bedingten W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 01.01.2015
Autor: hanspeter.schmid


> Nehmen wir an,dass [mm]80 \%[/mm] der Studierenden,deren Name auf
> einer abgegebenen Bearbeitung eines Übungsblatts
> erscheinen,die gelösten Aufgaben selbst bearbeitet haben,
> und dass [mm]75\%[/mm] dieser Studierenden die Klausur zur Vorlesung
> im [mm]1.[/mm]Versuch bestehen.Die restlichen [mm]20 \%[/mm]der Studierenden
> haben sich nur auf die Abgabe von jemand anderes mit drauf
> schreiben lassen,ohne die Aufgaben anzusehen. Nehmen wir
> an,dass [mm]10 \%[/mm] der letzeren Studiernden die Klausur im
> [mm]1.[/mm]Versuch bestehen. Betrachten sie die Ereignisse
>  
> [mm]A:"[/mm] Studierender hat die Aufgabe selbst bearbeitet.[mm]"[/mm]
> [mm]B:"[/mm] Studierender hat die Klausur im 1.Verusch bestanden.[mm]"[/mm]
>  
> [mm]a)[/mm]Welche der Wahrscheinlichkeiten
> [mm]P(A),P(A^c),P(B),P(B^c),P(A|B),P(A^c|B),P(A|B^c),P(A^c|B^c),P(B|A),P(B|A^c),P(B^c|A)[/mm]und
> [mm]P(B^c|A^c)[/mm] sind im Text gegeben?
>  Geben sie die Wahrscheinlichkeiten an.
>  
> [mm]b) [/mm]Berechnen sie die anderen Wahrscheinlichkeiten (in
> angemessener Reihenfolge)
>  
> [mm]c)[/mm]Beschreiben sie die Wahrscheinlichkeiten[mm]P(B^c|A)[/mm] und
> [mm]P(B|A^c)[/mm]verbal.


> Aufgabe a)
>
>  [mm]P(A) = 80/100[/mm]
>  [mm]P(A^c) = 20/100[/mm]
>  
>  [mm]P(B|A) =75/100[/mm]
>  [mm]P(B|A^c)=10/100[/mm]  

Das stimmt so.

Folglich kannst Du nun auch  [mm]P(B^c|A) =25/100[/mm] und [mm]P(B^c|A^c)=90/100[/mm] angeben.

> [mm]b)[/mm]
>
> [mm]1. P(B) = 0,1+0,75 = 0,85 = 85\%[/mm]

Also [mm]P(B)=P(B|A)+P(B|A^c)[/mm]? Nein, das stimmt nicht. $P(B|A)$ ist die W'keit, dass B, wenn A. Aber A tritt nicht immer ein. Korrekt ist:

[mm]P(B)=P(B\cap A)+P(B\cap A^c)=P(B|A)P(A)+P(B|A^c)P(A^c)[/mm]


> jetzt via Formel von Bayes
>  
> die lautet [mm]P(A|B) = \frac{P(B|A)*P(A)}{P(B)}[/mm]
>  

Und das wird dann wieder stimmen, wenn $P(B)$ stimmt.

Gruss,
Hanspeter

Bezug
                
Bezug
Bayes Formel+ Bedingten W'keit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Fr 02.01.2015
Autor: LGS

Hallo Hanspeter:)


also ich wollte die Aufgaben chronologisch und in richtiger Reihen folge,wie bei b) gefordert mal aufschreiben


aufgabe a)


$ P(A) = 80/100 $
$ [mm] P(A^c) [/mm] = 20/100 $
$ P(B|A) =75/100 $
$ [mm] P(B|A^c)=10/100 [/mm] $  


b)

$ [mm] P(B^c|A) [/mm] =25/100 = 1- P(B|A)  $
$ [mm] P(B^c|A^c)=90/100 [/mm] = 1- [mm] P(B|A^c) [/mm] $


$ [mm] P(B)=P(B\cap A)+P(B\cap A^c)=P(B|A)P(A)+P(B|A^c)P(A^c)= [/mm] 75/100*80/100+10/100*20/100= 31/50 = 0,62 $


$ [mm] P(B^c)= [/mm] 1-31/50 = 1- 0,62 =  19/50= 0,38$


jetzt mit der Formel von Bayes

1. $ P(A|B) = [mm] \frac{P(B|A)\cdot{}P(A)}{P(B)} [/mm] $

    $ P(A|B) = [mm] \frac{0,75\cdot{}0,8}{0,62} [/mm] = 0,967741 [mm] \approx 96,77\%$ [/mm]

2. $ [mm] P(A^c|B)= [/mm] 1- P(A|B) = 1-0,967741 = 0,03225 [mm] \approx [/mm] 3,22 [mm] \% [/mm] $


3. $ [mm] P(A|B^c) [/mm] = [mm] \frac{P(B^c|A)\cdot{}P(A)}{P(B^c)} [/mm] $
  
    $ [mm] P(A|B^c) [/mm] = [mm] \frac{0,25\cdot{}0,8}{0,38}= [/mm] 0,52631 [mm] \approx [/mm] 52,63  [mm] \% [/mm] $

4. $ [mm] P(A^c|B^c) [/mm] = [mm] \frac{P(B^c|A^c)\cdot{}P(A^c)}{P(B^c)} [/mm] $

    $ [mm] P(A^c|B^c) [/mm] = [mm] \frac{90/100\cdot{}0,2}{0,38} [/mm] = 0,473684 [mm] \approx 47,34\%$ [/mm]


aufgabe c)


  $ [mm] P(B^c|A) [/mm] =25/100$ verbale beschreibung: Es beschreibt die W'keit,dass die Studierenden die Klausur nicht im 1.Versuch bestehen unter der Bedingung,dass sie ihre Aufgaben selbst bearbeitet haben.


  $ [mm] P(B|A^c)=10/100 [/mm] $  verbale beschreibung: Es beschreibt die W'keit,dass die Studierenden die Klausur  im 1.Versuch bestehen unter der Bedingung,dass sie ihre Aufgaben  nicht selbst bearbeitet haben.



liebe grüße


lgs


Bezug
                        
Bezug
Bayes Formel+ Bedingten W'keit: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Fr 02.01.2015
Autor: hanspeter.schmid

Gratuliere, für mich sieht das alles korrekt aus!

Ich habe allerdings nicht numerisch nachgerechnet, nur einen Rundungsfehler habe ich sofort gesehen: $0,473684 [mm] \approx 47,34\% [/mm] $ ist falsch gerundet. Warum sehe ich das sofort? Weil [mm] $P(A|B^c) [/mm] + [mm] P(A^c|B^c) [/mm] = [mm] 100\%$ [/mm] sein muss ;)

Gruss,
Hanspeter

Bezug
                        
Bezug
Bayes Formel+ Bedingten W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Fr 02.01.2015
Autor: chrisno

In angemessener Reihenfolge ist eine unklare Angabe. Ich würde darunter eher verstehen:
In einer Reihenfolge, in der zuerst möglichst einfache Wahrscheinlichkeiten berechnet werden und danach möglichst viele, die mit einfachen Argumenten bestimmt werden. Zum Schluss die, die bis dahin noch nicht bearbeitet wurden.

Bezug
                                
Bezug
Bayes Formel+ Bedingten W'keit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Fr 02.01.2015
Autor: LGS

ja das ist richtig . ist die aufgabe in solch einer angemessenen Reihenfolge deiner Art geschrieben?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]