Bedeutung des Null setzen's < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:19 Do 14.01.2016 | Autor: | Tabeah |
Aufgabe | [mm] cos(x)e^{x}=sin(x) [/mm] |
Hallo,
ich habe eine Grundsatzfrage zum Null setzen. Diese Aufgabe ist ein Teil einer größeren Aufgabe und dient nur als Anschauungsobjekt.
Am Anfang muss ich den Term oben gleich Null setzen.
[mm] cos(x)e^{x}-sin(x)=0
[/mm]
So und genau hier ist mir die Frage aufgekommen was dass soll.
Die Aussage [mm] cos(x)e^{x}-sin(x)=0 [/mm] ist Falsch denn so wie es da steht gilt es ja für alle x. Stimmt aber nicht. Das ist doch mehr eine Frage als eine Aussage, nämlich die Frage wann [mm] cos(x)e^{x}-sin(x)=0 [/mm] wird.
Das kann man jetzt auf jede Formel mit Variablen drinnen übertragen.
Meine Frage also ist was die Aussage des Null setzen's denn genau ist.
In der Lösung wird einfach total dreisst gesagt [mm] f(x)=cos(x)e^{x}-sin(x) [/mm] und damit wird dann weiter gerechnet.
Das muss doch einen Grund haben.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:36 Do 14.01.2016 | Autor: | abakus |
> [mm]cos(x)e^{x}=sin(x)[/mm]
> Hallo,
>
> ich habe eine Grundsatzfrage zum Null setzen. Diese Aufgabe
> ist ein Teil einer größeren Aufgabe und dient nur als
> Anschauungsobjekt.
>
> Am Anfang muss ich den Term oben gleich Null setzen.
>
> [mm]cos(x)e^{x}-sin(x)=0[/mm]
>
> So und genau hier ist mir die Frage aufgekommen was dass
> soll.
>
> Die Aussage [mm]cos(x)e^{x}-sin(x)=0[/mm] ist Falsch denn so wie es
> da steht gilt es ja für alle x.
Schon deine Aussage "Die Aussage [mm]cos(x)e^{x}-sin(x)=0[/mm]... " ist falsch, denn [mm]cos(x)e^{x}-sin(x)=0[/mm] IST KEINE AUSSAGE, sondern nur eine Aussageform.
Daraus kann man auf folgende drei Arten eine Aussage machen:
a) Man ersetzt die freie Variable x durch einen konkreten Zahlenwert.
b) Man schreibt "Es gibt eine Zahl x mit " davor.
c) Man schreibt "Für alle x gilt: " davor (und das steht da entgegen deiner Behauptung noch nicht).
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:40 Do 14.01.2016 | Autor: | abakus |
> In der Lösung wird einfach total dreisst gesagt
> [mm]f(x)=cos(x)e^{x}-sin(x)[/mm]
Mit so einer Gleichung definiert man einfach die Vorschrift, die in der Funktion f einem Argument x seinen Funktionswert f(x) zuordnet.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:54 Do 14.01.2016 | Autor: | chrisno |
> [mm]cos(x)e^{x}=sin(x)[/mm]
> Hallo,
>
> ich habe eine Grundsatzfrage zum Null setzen. Diese Aufgabe
> ist ein Teil einer größeren Aufgabe und dient nur als
> Anschauungsobjekt.
Hier hake ich direkt ein. Ich muss nämlich raten, worum es eigentlich geht.
Du schreibst einfach [mm]cos(x)e^{x}=sin(x)[/mm].
Vermutlich gab es eine Fragestellung, die zu der Gleichung führte. Gesucht sind alle die x, für die die Gleichung richtig ist.
Das musst Du bestätigen, dass dies die Fragestellung ist.
>
> Am Anfang muss ich den Term oben gleich Null setzen.
Du musst nicht, aber es ist eine Strategie.
>
> [mm]cos(x)e^{x}-sin(x)=0[/mm]
>
> So und genau hier ist mir die Frage aufgekommen was dass
> soll.
>
> Die Aussage [mm]cos(x)e^{x}-sin(x)=0[/mm] ist Falsch denn so wie es
> da steht gilt es ja für alle x. Stimmt aber nicht. Das ist
> doch mehr eine Frage als eine Aussage, nämlich die Frage
> wann [mm]cos(x)e^{x}-sin(x)=0[/mm] wird.
Wenn die von mir formulierte Fragestellung stimmt, dann haben die Gleichungen
[mm]cos(x)e^{x}-sin(x)=0[/mm] und [mm]cos(x)e^{x}=sin(x)[/mm] die gleichen Lösungsmengen.
Das heißt wenn ein x die eine Gleichung löst, löst es auch die andere.
>
> Das kann man jetzt auf jede Formel mit Variablen drinnen
> übertragen.
Klar, bei Äquivalenzumformungen von Gleichungen bleibt die Lösungsmenge erhalten.
>
> Meine Frage also ist was die Aussage des Null setzen's denn
> genau ist.
Es ist keine Aussage, sondern eine Methode, die eventuell die Betrachtung vereinfacht. In diesem Fall sehe ich das nicht sofort. Allerdings vermute ich (Deine Informationen haben Lücken), dass es um eine numerische Bestimmung der Lösung handelt. Die Verfahren werden für die Bestimmung von Nullstellen formuliert.
> In der Lösung wird einfach total dreisst gesagt
Gar nicht dreist, sondern garantiert mit Bezug auf etwas, das vorausgesetzt wird.
> [mm]f(x)=cos(x)e^{x}-sin(x)[/mm] und damit wird dann weiter
> gerechnet.
Gerechnet? Erkläre
>
> Das muss doch einen Grund haben.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:01 Mo 18.01.2016 | Autor: | Tabeah |
Ah, danke euch beiden. Ich habe einfach ein paar Begrifflichkeiten der Mathematik durcheinander gebracht. Wenn das keine Aussage ist dann ist in meinem Kopf auch wieder alles klar. Im Grunde sucht man mit dem Null setzen ja alle x für die das gilt.
Dankeschön =)
|
|
|
|