www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bedingte W'keit und bed. EW
Bedingte W'keit und bed. EW < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte W'keit und bed. EW: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Do 16.12.2010
Autor: janisE

Aufgabe
Zwei Würfe werden mit einem fairen Würfel durchgeführt. Sei X die Augenzahl des ersten Wurfes und Y das Maximum beider Würfe.

a)

Bestimmen Sie die Wahrscheinlichkeitsgewichte von Y gegeben {X = k} für [mm] k \in \{1,\cdots,6\} [/mm]

b)

Für eine diskrete ZV sei der bedingte EW definiert als
[mm] E[Y|B] = [/mm] [mm] \sum\limits_{y \in Y(\Omega)} y \cdot P\left(\{Y=y\} | B\right) [/mm]

Bestimmen Sie [mm] E[Y|\{X=k\}] [/mm]


Hallo!

Was ich bisher habe:

a)

[mm] \Omega = \menge{1,\cdots,6}^2, |\Omega| = 36[/mm]
Gesuchst ist [mm] P_{Y|\{X=k\}}(n) = P(\{Y=n\}|\{X=k\}) [/mm].
Es folgt [mm] P(\{Y=n\}|\{X=k\}) = \frac{P(\{Y=n\}\cap\{X=k\})}{P(\{X=k\})} = \frac{P(\{Y=n\}\cap\{X=k\})}{\frac{1}{36}} [/mm]
und weiter
[mm]P(\{Y=n\}\cap\{X=k\}) = \begin{cases} 0 & k>n \\ \frac{1}{36} & k < n \\ \frac{|\{x \in \{1,\cdots,6\}, x \leq k\}|}{36} & k = n \end{cases}[/mm]

Doch wie bringe ich dies auf ein "Ergebnis"?

b)

Hier habe ich leider auch nur einen Anfang:

[mm]E[Y|\{X=k\}] = \sum\limits_{y\in Y(\Omega)} y \cdot P(\{Y=y\}|B)[/mm]
[mm] = (1 \cdot P(\{Y=1\}|B) + \cdots + (6 \cdot P(\{Y=6\}|B) [/mm]
[mm] \left(1 \cdot \frac{P(\{Y=1\} \cap B)}{P(B)}\right) + \cdots + \left(6 \cdot \frac{P(\{Y=6\} \cap B)}{P(B)}\right) [/mm]

Aber wie bekomme ich die Wahrscheinlichkeiten aufgelöst?

Danke im Voraus!





        
Bezug
Bedingte W'keit und bed. EW: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Do 16.12.2010
Autor: luis52

Moin Janis [huhu]




>  
> Was ich bisher habe:
>  
> a)
>  
> [mm]\Omega = \menge{1,\cdots,6}^2, |\Omega| = 36[/mm]
>  Gesuchst ist
> [mm]P_{Y|\{X=k\}}(n) = P(\{Y=n\}|\{X=k\}) [/mm].
>  Es folgt
> [mm]P(\{Y=n\}|\{X=k\}) = \frac{P(\{Y=n\}\cap\{X=k\})}{P(\{X=k\})} = \frac{P(\{Y=n\}\cap\{X=k\})}{\frac{1}{36}}[/mm]

[verwirrt] $P(X=k)=1/6$ fuer [mm] $k=1,\dots,6$. [/mm]


Es hakt offenbar an der Bestimmung der gemeinsamen Verteilung von $(X,Y)_$. Schreib dir mal eine [mm] $6\times6$-Tabelle [/mm] auf mit den Ueberschriften [mm] $1,\dots,6$ [/mm] (Ergebnis im zweiten Wurf) und den Zeilenbezeichnungen [mm] $1,\dots,6$ [/mm] (Ergebnis im ersten Wurf). In die Zelle $(x,y)_$ schreibst du den Wert von $(X,Y)_$. So steht in der 3. Zeile und der 5 Spalte (3,5). Da jede Zelle die Wsk 1/36 hat, kannst du nun [mm] $P(X=x\cap [/mm] Y=y)$ fuer alle [mm] $x,y=1,\dots,6$ [/mm] bestimmen.

vg Luis

Bezug
                
Bezug
Bedingte W'keit und bed. EW: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Do 16.12.2010
Autor: janisE


> Moin Janis [huhu]

Moin, moin!

> >  

> > Was ich bisher habe:
>  >  
> > a)
>  >  
> > [mm]\Omega = \menge{1,\cdots,6}^2, |\Omega| = 36[/mm]
>  >  Gesuchst
> ist
> > [mm]P_{Y|\{X=k\}}(n) = P(\{Y=n\}|\{X=k\}) [/mm].
>  >  Es folgt
> > [mm]P(\{Y=n\}|\{X=k\}) = \frac{P(\{Y=n\}\cap\{X=k\})}{P(\{X=k\})} = \frac{P(\{Y=n\}\cap\{X=k\})}{\frac{1}{36}}[/mm]
>  
> [verwirrt] [mm]P(X=k)=1/6[/mm] fuer [mm]k=1,\dots,6[/mm].

Das hatte ich erst, und hab es dann wieder verworfen. Ich darf nicht so lange Pausen machen ;)

[mm] [/mm][mm] P(\{Y=n\}|\{X=k\}) = \frac{P(\{Y=n\}\cap\{X=k\})}{P(\{X=k\})} = \frac{P(\{Y=n\}\cap\{X=k\})}{\frac{1}{6}} [/mm]

Besser?

> Es hakt offenbar an der Bestimmung der gemeinsamen
> Verteilung von [mm](X,Y)_[/mm]. Schreib dir mal eine
> [mm]6\times6[/mm]-Tabelle auf mit den Ueberschriften [mm]1,\dots,6[/mm]
> (Ergebnis im zweiten Wurf) und den Zeilenbezeichnungen
> [mm]1,\dots,6[/mm] (Ergebnis im ersten Wurf). In die Zelle [mm](x,y)_[/mm]
> schreibst du den Wert von [mm](X,Y)_[/mm]. So steht in der 3. Zeile
> und der 5 Spalte (3,5). Da jede Zelle die Wsk 1/36 hat,
> kannst du nun [mm]P(X=x\cap Y=y)[/mm] fuer alle [mm]x,y=1,\dots,6[/mm]
> bestimmen.

Du meinst also für alle einzeln berechnen, also für jede der 36 Möglichkeiten x und y zu verteilen die einzelne Wahrscheinlichkeit ausrechnen?

Und wie sieht meine b) aus?

Danke und Grüße,

Janis


Bezug
                        
Bezug
Bedingte W'keit und bed. EW: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:58 Do 16.12.2010
Autor: luis52


>

>

>  
> Und wie sieht meine b) aus?

Schaun mer mal was du bei a) so anschleppst.

vg Luis

Bezug
                                
Bezug
Bedingte W'keit und bed. EW: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 16.12.2010
Autor: janisE


> > Und wie sieht meine b) aus?
>  
> Schaun mer mal was du bei a) so anschleppst.

Ich habe das, was du vorgeschlagen hattest ja vorher schon so ähnlich gemacht, und als Ergebnis

[mm] P(\{Y=n\}\cap\{X=k\}) = \begin{cases} 0 & k>n \\ \frac{1}{36} & k < n \\ \frac{|\{x \in \{1,\cdots,6\}, x \leq k\}|}{36} & k = n \end{cases} [/mm]

herausbekommen. Also das ist es, wenn ich das Ergebnis generisch halten möchte. Die Frage ist halt, wie bekomme ich diese Definition in den Term [mm] \frac{P(\{Y=n\}\cap\{X=k\})}{\frac{1}{6}} [/mm] integriert (richtig ist es doch, oder?)


Bezug
                                        
Bezug
Bedingte W'keit und bed. EW: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Do 16.12.2010
Autor: luis52

Alles wird einfacher, wenn du mal eine Tabelle mit der gemeinsamen Wahrscheinlichkeitsfunktiion von $(X.Y)_$ erstellst.


vg Luis

Bezug
                                                
Bezug
Bedingte W'keit und bed. EW: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Do 16.12.2010
Autor: janisE


> Alles wird einfacher, wenn du mal eine Tabelle mit der
> gemeinsamen Wahrscheinlichkeitsfunktiion von [mm](X.Y)_[/mm]
> erstellst.

[]http://img684.imageshack.us/img684/4831/tabelled.png

und mit Wahrscheinlichkeiten

[]http://img822.imageshack.us/img822/9503/tabellen.png

aber wie hilft mir das jetzt weiter?



Bezug
                                                        
Bezug
Bedingte W'keit und bed. EW: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 16.12.2010
Autor: luis52


>  
> aber wie hilft mir das jetzt weiter?
>  
>  


Sehr schoen. Du kannst jetzt 6 bedingte Verteilungen ablesen, wenn du zeilenweise vorgehst. Beispielsweise ist [mm] $P(Y=3\mid [/mm] X=3)=(3/36)/(1/6)=1/2$, [mm] $P(Y=y\mid [/mm] X=3)=(1/36)/(1/6)=1/6$ fuer $y=4,5,6$ und [mm] $P(Y=y\mid [/mm] X=3)=0$ sonst. Damit ist Teil (a) erledigt.

Bei Teil (b) musst die Erwartuungswerte dieser 6 bedingten Verteilungen bestimmen.

vg Luis
        

Bezug
                                                                
Bezug
Bedingte W'keit und bed. EW: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:33 Do 16.12.2010
Autor: janisE


> Sehr schoen. Du kannst jetzt 6 bedingte Verteilungen
> ablesen, wenn du zeilenweise vorgehst. Beispielsweise ist
> [mm]P(Y=3\mid X=3)=(3/36)/(1/6)=1/2[/mm], [mm]P(Y=y\mid X=3)=(1/36)/(1/6)=1/6[/mm]
> fuer [mm]y=4,5,6[/mm] und [mm]P(Y=y\mid X=3)=0[/mm] sonst. Damit ist Teil (a)
> erledigt.

Also ist das Ergebnis die Tabelle?

> Bei Teil (b) musst die Erwartuungswerte dieser 6 bedingten
> Verteilungen bestimmen.

Welche 6 bedingten Verteilungen? Meinst du [mm] E[Y|\{X=k\}] [/mm] mit k [mm] \in [/mm] {1,2,3,4,5,6}?
Das wäre für k = 1

[mm]E[Y| \{X=1\}] & = & \sum\limits_{y\in Y(\Omega)} y \cdot P(\{Y=y\}|\{X=1\}) [/mm]

[mm]=\left(1 \cdot \frac{P(\{Y=1\} \wedge \{X=1\}) }{P(\{X=1\}}\right) + \cdots + \left(6 \cdot \frac{P(\{Y=6\} \wedge \{X=1\}) }{P(\{X=1\}}\right) [/mm]

[mm] = \left(1 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(2 \cdot \frac{\frac{2}{36}}{\frac{1}{6}}\right) + \left(3 \cdot \frac{\frac{3}{36}}{\frac{1}{6}}\right) + \left(4 \cdot \frac{\frac{4}{36}}{\frac{1}{6}}\right) + \left(5 \cdot \frac{\frac{5}{36}}{\frac{1}{6}}\right) + \left(6 \cdot \frac{\frac{6}{36}}{\frac{1}{6}}\right) = \frac{1}{6} + \frac{2}{3} + \frac{3}{2} + \frac{8}{3} + \frac{25}{6} + 6 = 15 \frac{1}{6}[/mm]

Und das ist für alle k von 1 bis 6 gefragt, oder wie?

Wieder einmal danke für deine Geduld ;)



Bezug
                                                                        
Bezug
Bedingte W'keit und bed. EW: Antwort
Status: (Antwort) fertig Status 
Datum: 06:54 Fr 17.12.2010
Autor: luis52


> > Sehr schoen. Du kannst jetzt 6 bedingte Verteilungen
> > ablesen, wenn du zeilenweise vorgehst. Beispielsweise ist
> > [mm]P(Y=3\mid X=3)=(3/36)/(1/6)=1/2[/mm], [mm]P(Y=y\mid X=3)=(1/36)/(1/6)=1/6[/mm]
> > fuer [mm]y=4,5,6[/mm] und [mm]P(Y=y\mid X=3)=0[/mm] sonst. Damit ist Teil (a)
> > erledigt.
>  
> Also ist das Ergebnis die Tabelle?

Ja, die Tabelle der bedingten Verteilungen.

>  
> > Bei Teil (b) musst die Erwartuungswerte dieser 6 bedingten
> > Verteilungen bestimmen.
>  
> Welche 6 bedingten Verteilungen? Meinst du [mm]E[Y|\{X=k\}][/mm] mit
> k [mm]\in[/mm] {1,2,3,4,5,6}?

Ja.

>  Das wäre für k = 1
>  
> [mm]E[Y| \{X=1\}] & = & \sum\limits_{y\in Y(\Omega)} y \cdot P(\{Y=y\}|\{X=1\})[/mm]
>  
> [mm]=\left(1 \cdot \frac{P(\{Y=1\} \wedge \{X=1\}) }{P(\{X=1\}}\right) + \cdots + \left(6 \cdot \frac{P(\{Y=6\} \wedge \{X=1\}) }{P(\{X=1\}}\right)[/mm]
>  
> [mm]= \left(1 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(2 \cdot \frac{\frac{2}{36}}{\frac{1}{6}}\right) + \left(3 \cdot \frac{\frac{3}{36}}{\frac{1}{6}}\right) + \left(4 \cdot \frac{\frac{4}{36}}{\frac{1}{6}}\right) + \left(5 \cdot \frac{\frac{5}{36}}{\frac{1}{6}}\right) + \left(6 \cdot \frac{\frac{6}{36}}{\frac{1}{6}}\right) = \frac{1}{6} + \frac{2}{3} + \frac{3}{2} + \frac{8}{3} + \frac{25}{6} + 6 = 15 \frac{1}{6}[/mm]
>  

Wie kommst denn darauf?

[mm]E[Y| \{X=1\}] & = & \sum\limits_{y\in Y(\Omega)} y \cdot P(\{Y=y\}|\{X=1\})[/mm]
[mm]=\left(1 \cdot \frac{P(\{Y=1\} \wedge \{X=1\}) }{P(\{X=1\}}\right) + \cdots + \left(6 \cdot \frac{P(\{Y=6\} \wedge \{X=1\}) }{P(\{X=1\}}\right)[/mm]

[mm]= \left(1 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(2\cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(3 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(4 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(5 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) + \left(6 \cdot \frac{\frac{1}{36}}{\frac{1}{6}}\right) = \frac{21}{6} = 3 \frac{1}{2[/mm]

ein Wert, der zwischen 1 und 6 liegt, wie es sein muss.  


> Und das ist für alle k von 1 bis 6 gefragt, oder wie?

So ist es.


vg Luis


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]