Bedingte Wahrscheinlichkeit < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:13 Di 05.10.2004 | Autor: | bigayal |
Hallo erstma:) Bin der Neue:)))
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Habe folgendes Problem bei der Vorbereitung zum Vordiplom:
Eine Urne hat 2 rote, 2 schwarze und 2 blaue Kugeln. Zwei Personen I und II vereinbaren, dass II räumlich getrennt von I rein zufällig ohne zurücklegen aus der Urne Kugeln entnimmt und I mitteilt bei welchem Zug zum ersten Mal eine balue Kugel auftritt. Annahme II ruft I zu "im dritten Zug!", wie gross ist dann die Wkeit dass die ersten beiden Kugeln rot waren?
-> Ich habe auch gleich noch ne Lösung die ich aber net versteh, das sit das Problem:(:
Wir nummerieren die Kugeln durch: rot: 1,2 ; blau: 3,4 und schwarz: 5,6.
Zwei Ereignisse:
A:= "die ersten beiden gez. Kugeln sind rot!"
B:= "im dritten Zug kommt eine blaue Kugel!"
A = {(a1, a2, a3) : {a1,a2} = {1,2}}
B = {(a1,a2,a3) : a3 [mm] \in [/mm] {3,4}, {a1,a2} [mm] \subseteq [/mm] {1,2,5,6}}
So jetzt kommt der teil den ich net versteh:
wegen |A [mm] \cap [/mm] B| = 2*1*2 und |B| = 4*3*2 folgt:
P(A|B) = P(a [mm] \cap [/mm] B)/P(B) = |A [mm] \cap [/mm] B|/|B| =1/6
Ich habs rot markiert, ich weiss nicht wie man auf das 2*1*2 oder die 4*3*2 kommt, da steht zwar was von Multiplikationsregel aber die sagt mir in diesem Bezug leider nichts.
Ich bedanke mich schonmal im voraus:)
|
|
|
|
Hallo bigayal!
> Eine Urne hat 2 rote, 2 schwarze und 2 blaue Kugeln. Zwei
> Personen I und II vereinbaren, dass II räumlich getrennt
> von I rein zufällig ohne zurücklegen aus der Urne Kugeln
> entnimmt und I mitteilt bei welchem Zug zum ersten Mal eine
> balue Kugel auftritt. Annahme II ruft I zu "im dritten
> Zug!", wie gross ist dann die Wkeit dass die ersten beiden
> Kugeln rot waren?
> -> Ich habe auch gleich noch ne Lösung die ich aber net
> versteh, das sit das Problem:(:
> Wir nummerieren die Kugeln durch: rot: 1,2 ; blau: 3,4 und
> schwarz: 5,6.
> Zwei Ereignisse:
> A:= "die ersten beiden gez. Kugeln sind rot!"
> B:= "im dritten Zug kommt eine blaue Kugel!"
> $A = [mm] \{(a1, a2, a3) : \{a1,a2\} = \{1,2\}\}$
[/mm]
> $B = [mm] \{(a1,a2,a3) : a3 \in \{3,4\}, \{a1,a2\} \subseteq \{1,2,5,6\}\}$
[/mm]
>
> So jetzt kommt der teil den ich net versteh:
> wegen |A [mm]\cap[/mm] B| = 2*1*2 und |B| = 4*3*2 folgt:
Vielleicht denkst Du hier einfach ein wenig zu kompliziert. Schauen wir uns erst mal $|B| $ an. Um so ein Tupel aus $B$ zu bauen, hat man für $a1$ 4 Möglichkeiten (Kugel 1,2,5 oder 6), da dort alles außer einer blauen Kugel stehen darf. Für $a2$ gibt es dann nur noch 3 Möglichkeiten, da ja ohne Zurücklegen gezogen wird und die erste gezogene Kugel nicht mehr zur Verfügung steht. Und es darf immer noch keine blaue Kugel sein. Die dritte Kugel $a3$ muss jetzt aber blau sein. Dafür gibt es 2 Möglichkeiten (Kugel 3 oder 4). Da alle Möglichkeiten kombiniert werden können, müssen wir die Anzahlen multiplizieren: $|B|=4 [mm] \cdot 3\cdot [/mm] 2$, so wie es oben steht.
Bei [mm] $A\cap [/mm] B$ hat ein einzelnes Ergebnis auf den ersten beiden Stellen eine rote Kugel und danach eine blaue Kugel. Daher gibt es für $a1$ gerade 2 Möglichkeiten (Kugel 1 oder 2). $a2$ steht dann schon fest (eben die andere rote Kugel, je nachdem, was $a1$ ergab). Für $a3$ gibt es wie oben wieder 2 Möglichkeiten (Kugel 3 oder 4). Also insgesamt
$|A [mm] \cap [/mm] B| = [mm] 2\cdot 1\cdot [/mm] 2$.
Alles klar?
Viele Grüße
Brigitte
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:30 Di 05.10.2004 | Autor: | bigayal |
danke für die prompte Antwort. Ich wünschte ich hätte so eine Übersicht in Mathe wie Du:)
|
|
|
|