Beschränkte Folge < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:23 Mo 18.09.2017 | Autor: | djanselo |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Aufgabe | Zeigen sie,dass die Folge $(\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})$ |
Hi:
wir haben einen Satz ,der da ist $: n \ge 2$ ,dann gilt für die $n$-te Primzahl $p_n$ die Abschätzung $\frac{1}{2}nln(n)<p_n<3nln(n)$
Nun zum Beweis von $(\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})$
1. $\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \ge \sum_{n=2}^{N} \frac{ln(3n*ln(n))}{3n*ln(n)} = \frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n*ln(n))}{n*ln(n)} =\frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n)+ln(n)}{n*ln(n)} \ge \frac{1}{3}*\integral_{2}^{N}{\frac{ln(3x)+ln(ln(x))}{x*ln(x)} dx}=\frac{1}{3}*\integral_{2}^{N}{\frac{ln(3)+ln(x)+ln(ln(x))}{x*ln(x)} dx}$
$=\frac{1}{3}*(\integral_{2}^{N}{\frac{ln(3)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=\frac{1}{3}*( ln(3)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \ge \frac{1}{3}*( ln(3)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N))) $ damit is es nach unten beschränkt
2. $\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \le \sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{\frac{1}{2}n*ln(n)} = 2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{n*ln(n)} =2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n)+ln(n)}{n*ln(n)} \le 2*\integral_{2}^{N}{\frac{ln(\frac{1}{2}x)+ln(ln(x))}{x*ln(x)} dx}=2*\integral_{2}^{N}{\frac{ln(\frac{1}{2})+ln(x)+ln(ln(x))}{x*ln(x)} dx}$
$=2*(\integral_{2}^{N}{\frac{ln(1)-ln(2)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=2*( -ln(2)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \le 2*( -ln(2)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N))) $ damit is es nach oben beschränkt.
Das heißt,dass die Folge allgemein $(\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})$
geht das so?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo,
> Zeigen sie,dass die Folge [mm](\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})[/mm]
>
Hier fehlt was. Ich nehme mal an, dass gezeigt werden soll, dass die Folge beschränkt ist.
> Hi:
>
> wir haben einen Satz ,der da ist [mm]: n \ge 2[/mm] ,dann gilt für
> die [mm]n[/mm]-te Primzahl [mm]p_n[/mm] die Abschätzung
> [mm]\frac{1}{2}nln(n)
>
> Nun zum Beweis von [mm](\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})[/mm]
>
> 1. [mm]\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \ge \sum_{n=2}^{N} \frac{ln(3n*ln(n))}{3n*ln(n)}[/mm]
Hier kannst du wegen [mm]3\ln n\ge 1[/mm] den Zähler durch [mm]\ln n[/mm] abschätzen und bekommst die deutlich einfachere Abschätzung [mm]...\ge\sum\frac{1}{3n}\ge ...[/mm]
>[mm] = \frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n*ln(n))}{n*ln(n)} =\frac{1}{3}*\sum_{n=2}^{N} \frac{ln(3n)+ln(n)}{n*ln(n)} \ge \frac{1}{3}*\integral_{2}^{N}{\frac{ln(3x)+ln(ln(x))}{x*ln(x)} dx}=\frac{1}{3}*\integral_{2}^{N}{\frac{ln(3)+ln(x)+ln(ln(x))}{x*ln(x)} dx}[/mm]
>
> [mm]=\frac{1}{3}*(\integral_{2}^{N}{\frac{ln(3)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=\frac{1}{3}*( ln(3)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \ge \frac{1}{3}*( ln(3)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N)))[/mm]
> damit is es nach unten beschränkt
>
> 2. [mm]\sum_{n=1}^{N} \frac{ln(p_n)}{p_n} \le \sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{\frac{1}{2}n*ln(n)} = 2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n*ln(n))}{n*ln(n)} =2*\sum_{n=2}^{N} \frac{ln(\frac{1}{2}n)+ln(n)}{n*ln(n)}[/mm]
Im Zähler muss en doppelter ln stehen. Der Zähler ässt sich insgesamt durch [mm]2\ln n[/mm] nach oben abschätzen, so dass auch hier die Rechnung deutlich einfacher wird.
[mm] \le 2*\integral_{2}^{N}{\frac{ln(\frac{1}{2}x)+ln(ln(x))}{x*ln(x)} dx}=2*\integral_{2}^{N}{\frac{ln(\frac{1}{2})+ln(x)+ln(ln(x))}{x*ln(x)} dx}[/mm]
>
> [mm]=2*(\integral_{2}^{N}{\frac{ln(1)-ln(2)}{x*ln(x)} dx+\integral_{2}^{N}{\frac{ln(x)}{x*ln(x)}dx+\integral_{2}^{N}{\frac{ln(ln(x))}{x*ln(x)}dx})=2*( -ln(2)*ln(ln(x))|_{2}^{N}+ln(x)|_{2}^{N}+ \frac{1}{2} ln^2(ln(x))|_2^{N}) \le 2*( -ln(2)*ln(ln(N))+ln(N)+ \frac{1}{2} ln^2(ln(N)))[/mm]
> damit is es nach oben beschränkt.
>
> Das heißt,dass die Folge allgemein [mm](\frac{1}{ln(N)} \sum_{n=1}^{N} \frac{ln(p_n)}{p_n})[/mm]
>
>
> geht das so?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|