www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Beschränktheit von Funktionen
Beschränktheit von Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beschränktheit von Funktionen: Frage zur Lösung
Status: (Frage) beantwortet Status 
Datum: 15:46 Mi 20.07.2005
Autor: annaL

Ich habe eine Aufgabe mit Lösung bekommen, wo ich die Lösung leider gar nicht nachvollziehen kann.
Vielleicht kann mir jemand erklären was gemacht wurde?
DANKE!!

Ich soll zeigen dass die Funktion R-->R w(x) =  [mm] \bruch{x^2+x+7}{x^4+2} [/mm] beschränkt ist.

Lösung:


Definition : [mm] \vmat{ w(x) } \le [/mm] K , für alle x Element aus R ( K [mm] \ge [/mm] 0)

1. Fall:
Sei x Element [ -1, 1 ] , d.h.  [mm] \vmat{x} \le [/mm] 1


-->  [mm] \vmat{w(x)} [/mm] =  [mm] \bruch{x^2+x+7}{x^4+2} [/mm] ( der Zähler ist hier

komplett als Betrag geschrieben!!! WIESO? )  [mm] \le \bruch{x^2+x+7} [/mm]

[mm] {x^4+2} [/mm] ( hier steht nur noch das x im Zähler in Betragszeichen! )  [mm] \le [/mm]

[mm] \bruch{1+1+7}{2} [/mm] = 4,5


2.Fall: Sei  [mm] \vmat{x} [/mm] > 1

-->  [mm] \vmat{w(x)} [/mm] = [mm] \bruch{x^2+x+7}{x^4+2} [/mm] ( wieder der gesamte

Zähler in Betragszeichen! )  [mm] \le \bruch{x^2+x+7}{x^4} [/mm] ( das x im Zähler

als Betrag geschrieben! )  [mm] \le \bruch{x^4+7x^4+x^4}{x^4} [/mm] = 9


Also gilt:  [mm] \vmat{w(x)} \le [/mm] 9 , d. h w(x) ist beschränkt!

Ich würde mich sehr freuen wenn mir jemand erklären könnte was hier gemacht wurde. die Lösung wirft mir schon seit einigen Stunden Rätsel auf!




        
Bezug
Beschränktheit von Funktionen: relativ vollst. Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mi 20.07.2005
Autor: statler


> Ich habe eine Aufgabe mit Lösung bekommen, wo ich die
> Lösung leider gar nicht nachvollziehen kann.
>  Vielleicht kann mir jemand erklären was gemacht wurde?
>  DANKE!!
>  
> Ich soll zeigen dass die Funktion R-->R w(x) =  
> [mm]\bruch{x^2+x+7}{x^4+2}[/mm] beschränkt ist.
>  
> Lösung:
>  
>
> Definition : [mm]\vmat{ w(x) } \le[/mm] K , für alle x Element aus
> R ( K [mm]\ge[/mm] 0)
>  
> 1. Fall:
> Sei x Element [ -1, 1 ] , d.h.  [mm]\vmat{x} \le[/mm] 1
>  
>
> -->  [mm]\vmat{w(x)}[/mm] =  [mm]\bruch{x^2+x+7}{x^4+2}[/mm] ( der Zähler ist

> hier
>
> komplett als Betrag geschrieben!!! WIESO? )  [mm]\le \bruch{x^2+x+7}[/mm]
>  

Naja, der Betrag eines Bruches ist natürlich gleich Betrag Zähler durch Betrag Nenner, und der Betrag des Nenners ist in diesem Fall gleich dem Nenner, weil der immer positiv ist (xhoch4 ist immer positiv, weil gerade Potenz).

> [mm]{x^4+2}[/mm] ( hier steht nur noch das x im Zähler in
> Betragszeichen! )  [mm]\le[/mm]
>  
> [mm]\bruch{1+1+7}{2}[/mm] = 4,5
>

Wenn ich xhoch4 im Nenner weglasse, mache ich den Nenner kleiner, also den Bruch größer; im Zähler kann ich mit der Dreiecksungleichung herumwerkeln, dann stehen die Summanden als Beträge da und der Zähler wird dabei höchstens größer, jedenfalls nicht kleiner, und dann kann ich ohne den Wert zu ändern die Betragsstriche in ein Produkt ziehen (Betrag ist ein Homomorphismus) und bei 7 kann ich sie auch weglassen, weil 7 positiv ist; für xBetrag setze ich dann den größtmöglichen Wert 1 (der ist hier 1) das macht das ganze Gebilde wieder höchstens größer, und dann hat man das Ergebnis.

>
> 2.Fall: Sei  [mm]\vmat{x}[/mm] > 1
>  
> -->  [mm]\vmat{w(x)}[/mm] = [mm]\bruch{x^2+x+7}{x^4+2}[/mm] ( wieder der

> gesamte
>
> Zähler in Betragszeichen! )  [mm]\le \bruch{x^2+x+7}{x^4}[/mm] (
> das x im Zähler
>
> als Betrag geschrieben! )  [mm]\le \bruch{x^4+7x^4+x^4}{x^4}[/mm] =
> 9
>  
>
> Also gilt:  [mm]\vmat{w(x)} \le[/mm] 9 , d. h w(x) ist beschränkt!
>  

Hier läuft es ganz ähnlich: Ich mache den Nenner kleiner und den Zähler größer; weil xBetrag größer als 1 ist, kann ich im Zähler munter damit herummultiplizieren, und der Wert des Bruches wird immer nur größer und am Ende sehe ich, daß er trotzdem kleiner als 9 bleibt. Schön, nicht?

> Ich würde mich sehr freuen wenn mir jemand erklären könnte
> was hier gemacht wurde. die Lösung wirft mir schon seit
> einigen Stunden Rätsel auf!
>  

Ich hoffe, daß du mit meinem Elaborat was anfangen kannst, und wünsche einen schönen Abend.

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]