Besondere Ebenen und Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:50 Do 22.02.2007 | Autor: | Mark007 |
Hallo habe 'ne Aufgabe, bei der ich mir überhaupt nicht sicher bin, ob meine Lösungen richtig sind. Das ist eine etwas längere Aufgabe. Wäre nett, wenn du dir wenigstens Teile ansehen könntest. Danke
Nr1) Besondere Ebenen und Geraden:
Wo liegen alle Punkte, für die gilt:
a) 1. Koordinate ist 0 [2;-3]
b) 2. Koordinate ist 0 [3;-2]
c) 3. Koordinate ist 0 [4;-1,5]
d) 1. und 2. Koordinate sind 0 [0,5;-1]
e) 1. und 3. Koordinbate sind 0[2;-0,5]
f) 2. und 3. Koordinate sind 0 [10;-5]
(x1 ist bei dem Koordinatensystem die herauskommende (aus der Bildebene) kommende Achse. x2 ist die normale x-Achse und x3 ist die y-Achse)
Meine Lösungen a) 0 : Punkte liegen auf der x2-Achse
+2:Ebenfalls auf dem Boden., bloß 2 Einheiten auf der x1-Achse von der x2-Achse entfernt.Also parallel zur x2-Achse.
-3: genauso, bloß eben -3
b) 0: Auf der x3 und auch der x2 Achse. 3: Immer 3 einheiten auf der x2-Achse, von der x1 Achse entfernt (rechts): Waagercht
-2: Immer -2 links von der x1-Achse
c) 0: Auf der x1 und x2 Achse
4: 4 Einheiten von der x1-Achse, senkrecht nach oben
-1,5: Von der x1-Achse 1,5 Einheiten senkrecht nach unten
d) 0: Auf der x3-Achse
0,5: Auf der Parallelen zur x1-Achse, die sich 0,5 rechts von x1 befindet.
-1: 1ne Einheit links von x1
e) 0: Auf der x2-Achse
-0,5: Auf der Parallelen zur x1, die sich 0,5 rechts davon befindet.
2: Je 2 Einheiten von der x1-Achse nach rechts. Die Parallele zur x1-Achse
f) 0: Auf der x1-Achse
10:Auf der x2-Achse und auf jeder Parallelen von ihr. Mit -5 genauso.
Dankeschön
|
|
|
|
Hallo Mark007,
> Hallo habe 'ne Aufgabe, bei der ich mir überhaupt nicht
> sicher bin, ob meine Lösungen richtig sind. Das ist eine
> etwas längere Aufgabe. Wäre nett, wenn du dir wenigstens
> Teile ansehen könntest. Danke
>
> Nr1) Besondere Ebenen und Geraden:
> Wo liegen alle Punkte, für die gilt:
> a) 1. Koordinate ist 0 [2;-3]
> b) 2. Koordinate ist 0 [3;-2]
> c) 3. Koordinate ist 0 [4;-1,5]
> d) 1. und 2. Koordinate sind 0 [0,5;-1]
> e) 1. und 3. Koordinbate sind 0[2;-0,5]
> f) 2. und 3. Koordinate sind 0 [10;-5]
>
> (x1 ist bei dem Koordinatensystem die herauskommende (aus
> der Bildebene) kommende Achse. x2 ist die normale x-Achse
> und x3 ist die y-Achse)
>
> Meine Lösungen a) 0 : Punkte liegen auf der x2-Achse
> +2:Ebenfalls auf dem Boden., bloß 2 Einheiten auf der
> x1-Achse von der x2-Achse entfernt.Also parallel zur
> x2-Achse.
> -3: genauso, bloß eben -3
>
> b) 0: Auf der x3 und auch der x2 Achse.
> 3: Immer 3
> einheiten auf der x2-Achse, von der x1 Achse entfernt
> (rechts): Waagercht
> -2: Immer -2 links von der x1-Achse
>
> c) 0: Auf der x1 und x2 Achse
> 4: 4 Einheiten von der x1-Achse, senkrecht nach oben
> -1,5: Von der x1-Achse 1,5 Einheiten senkrecht nach unten
>
> d) 0: Auf der x3-Achse
> 0,5: Auf der Parallelen zur x1-Achse, die sich 0,5 rechts
> von x1 befindet.
> -1: 1ne Einheit links von x1
>
> e) 0: Auf der x2-Achse
> -0,5: Auf der Parallelen zur x1, die sich 0,5 rechts davon
> befindet.
> 2: Je 2 Einheiten von der x1-Achse nach rechts. Die
> Parallele zur x1-Achse
>
> f) 0: Auf der x1-Achse
> 10:Auf der x2-Achse und auf jeder Parallelen von ihr. Mit
> -5 genauso.
>
Wenn bei a) - c) nur eine Koordinate der Punkte einen bestimmten Wert hat, dann sind die beiden anderen beliebig
[mm] \Rightarrow [/mm] es wird jeweils eine Ebene beschrieben!
Überlege jetzt selbst, welche Ebene das jeweils sein muss.
d)-f) hast du ja schon richtig überlegt.
Gruß informix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:20 Do 22.02.2007 | Autor: | Mark007 |
Hi, danke für die Antwort!
Nr1a) 1.Koordinate 0: x2-x3-Ebene.
2: x2-x3 Ebene, bloß um 2 auf der x1-Achse verschoben. Das selbe gilt für Minus dreib, bloß eben für -3.
Ich frage mich gerade, ob es so richtig ist, oder ob man nicht doch verallgemeinern kann. Kann man niht sagen dass alle Punkte, bei denen die 1.Koordinate: 0;2;-3 ist, auf der x2-x3-Ebene liegen? Ohne Einzugrenzen? Also ohne zu sagen, dass diese Ebene verschoben wurde?
|
|
|
|
|
Hallo Mark007,
> Hi, danke für die Antwort!
> Nr1a) 1.Koordinate 0: x2-x3-Ebene.
> 2: x2-x3 Ebene, bloß um 2 auf der x1-Achse verschoben.
> Das selbe gilt für Minus dreib, bloß eben für -3.
>
> Ich frage mich gerade, ob es so richtig ist, oder ob man
> nicht doch verallgemeinern kann. Kann man niht sagen dass
> alle Punkte, bei denen die 1.Koordinate: 0;2;-3 ist, auf
> der x2-x3-Ebene liegen? Ohne Einzugrenzen? Also ohne zu
> sagen, dass diese Ebene verschoben wurde?
nein, sie liegen für [mm] x_1\ne0 [/mm] auf parallelen Ebenen zur 2-3-Ebene usw.
nur für [mm] x_1=0 [/mm] auf der Ebene
Gruß informix
|
|
|
|