Besselfunktion < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo zusammen
Sitze seit einiger Zeit an folgender Aufgabe:
Für [mm] n\in \IZ [/mm] ist die Bessel Funktion [mm] J_n: \IR [/mm] -> [mm] \IR [/mm] definiert durch
[mm] J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}
[/mm]
Zeige, dass [mm] J_n [/mm] die Besselsche Differentialgleichung
[mm] x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0, [/mm] x [mm] \in \IR
[/mm]
löst.
Sei f(t,x)=cos(xsin(t)-nt) & [mm] F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}
[/mm]
Nun kann ich ja den Satz über parameterabhängige Integrale benutzen, da alle Voraussetzungen dieses Satzes erfüllt sind.
Es gilt also:
[mm] \bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}
[/mm]
Nun habe ich dies mit part. Integration weiter aufgelöst:
[mm] =-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt} [/mm] + [mm] \bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}
[/mm]
[mm] \bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}
[/mm]
Setze ich dies nun in die DGL ein: so folgt:
[mm] \bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0
[/mm]
Wie kann ich dies nun weiter lösen?
|
|
|
|
Hallo Babybel73,
> Hallo zusammen
>
> Sitze seit einiger Zeit an folgender Aufgabe:
> Für [mm]n\in \IZ[/mm] ist die Bessel Funktion [mm]J_n: \IR[/mm] -> [mm]\IR[/mm]
> definiert durch
> [mm]J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> Zeige, dass [mm]J_n[/mm] die Besselsche Differentialgleichung
> [mm]x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,[/mm] x [mm]\in \IR[/mm]
> löst.
>
> Sei f(t,x)=cos(xsin(t)-nt) &
> [mm]F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> Nun kann ich ja den Satz über parameterabhängige
> Integrale benutzen, da alle Voraussetzungen dieses Satzes
> erfüllt sind.
> Es gilt also:
> [mm]\bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}[/mm]
>
> Nun habe ich dies mit part. Integration weiter aufgelöst:
> [mm]=-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}[/mm]
> + [mm]\bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}[/mm]
>
> [mm]\bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> Setze ich dies nun in die DGL ein: so folgt:
> [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0[/mm]
>
> Wie kann ich dies nun weiter lösen?
>
Schreibe den ersten Summanden etwas um:
[mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}=\bruch{n}{\pi}\integral_{0}^{\pi}{\blue{x}*cos(t)*cos(xsin(t)-nt) dt}[/mm]
Der Faktor [mm]x*\cos\left(t\right)[/mm] ist fast die Ableitung von [mm]xsin(t)-nt[/mm].
Damit solltest Du weiter kommen.
Gruss
MathePower
|
|
|
|
|
Hallo mathepower
> Hallo Babybel73,
>
> > Hallo zusammen
> >
> > Sitze seit einiger Zeit an folgender Aufgabe:
> > Für [mm]n\in \IZ[/mm] ist die Bessel Funktion [mm]J_n: \IR[/mm] -> [mm]\IR[/mm]
> > definiert durch
> >
> [mm]J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> >
> > Zeige, dass [mm]J_n[/mm] die Besselsche Differentialgleichung
> > [mm]x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,[/mm] x [mm]\in \IR[/mm]
> > löst.
> >
> > Sei f(t,x)=cos(xsin(t)-nt) &
> > [mm]F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> >
> > Nun kann ich ja den Satz über parameterabhängige
> > Integrale benutzen, da alle Voraussetzungen dieses Satzes
> > erfüllt sind.
> > Es gilt also:
> > [mm]\bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}[/mm]
>
> >
> > Nun habe ich dies mit part. Integration weiter aufgelöst:
> > [mm]=-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}[/mm]
> > + [mm]\bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}[/mm]
>
> >
> > [mm]\bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> >
> > Setze ich dies nun in die DGL ein: so folgt:
> > [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0[/mm]
>
> >
> > Wie kann ich dies nun weiter lösen?
> >
>
>
> Schreibe den ersten Summanden etwas um:
>
> [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}=\bruch{n}{\pi}\integral_{0}^{\pi}{\blue{x}*cos(t)*cos(xsin(t)-nt) dt}[/mm]
>
> Der Faktor [mm]x*\cos\left(t\right)[/mm] ist fast die Ableitung von
> [mm]xsin(t)-nt[/mm].
>
> Damit solltest Du weiter kommen.
>
Irgendwie komme ich nicht wirklich weiter, habe versucht nochmals partiell zu integrieren.....aber das hat nicht geklappt, da sich dann ja der hintere Teil wieder ändert....kannst du mir nochmals einen Tipp geben?
>
> Gruss
> MathePower
|
|
|
|
|
Hallo Babybel73,
> Hallo mathepower
>
> > Hallo Babybel73,
> >
> > > Hallo zusammen
> > >
> > > Sitze seit einiger Zeit an folgender Aufgabe:
> > > Für [mm]n\in \IZ[/mm] ist die Bessel Funktion [mm]J_n: \IR[/mm] -> [mm]\IR[/mm]
> > > definiert durch
> > >
> > [mm]J_n(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> >
> > >
> > > Zeige, dass [mm]J_n[/mm] die Besselsche Differentialgleichung
> > > [mm]x^2y''(x)+xy'(x)+(x^2-n^2)y(x)=0,[/mm] x [mm]\in \IR[/mm]
> > >
> löst.
> > >
> > > Sei f(t,x)=cos(xsin(t)-nt) &
> > > [mm]F(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> >
> > >
> > > Nun kann ich ja den Satz über parameterabhängige
> > > Integrale benutzen, da alle Voraussetzungen dieses Satzes
> > > erfüllt sind.
> > > Es gilt also:
> > > [mm]\bruch{\partial F}{\partial x}(x)=\bruch{1}{\pi}\integral_{0}^{\pi}{\bruch{\partial f}{\partial x}(t,x) dt} =\bruch{1}{\pi}\integral_{0}^{\pi}{-sin(xsin(t)-nt)*sin(t)) dt}[/mm]
>
> >
> > >
> > > Nun habe ich dies mit part. Integration weiter aufgelöst:
> > > [mm]=-\bruch{x}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}[/mm]
> > > + [mm]\bruch{n}{\pi} \integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}[/mm]
>
> >
> > >
> > > [mm]\bruch{\partial^2 F}{\partial x^2}(x)=-\bruch{1}{\pi} \integral_{0}^{\pi}{sin^2(t)*cos(xsin(t)-nt) dt}=-\bruch{1}{\pi} \integral_{0}^{\pi}{(1-cos^2(t))*cos(xsin(t)-nt) dt}=\bruch{1}{\pi} \integral_{0}^{\pi}{cos^2(t)*cos(xsin(t)-nt) dt}-\bruch{1}{\pi} \integral_{0}^{\pi}{cos(xsin(t)-nt) dt}[/mm]
>
> >
> > >
> > > Setze ich dies nun in die DGL ein: so folgt:
> > > [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}-\bruch{n^2}{\pi}\integral_{0}^{\pi}{cos(xsin(t)-nt) dt}=0[/mm]
>
> >
> > >
> > > Wie kann ich dies nun weiter lösen?
> > >
> >
> >
> > Schreibe den ersten Summanden etwas um:
> >
> > [mm]\bruch{nx}{\pi}\integral_{0}^{\pi}{cos(t)*cos(xsin(t)-nt) dt}=\bruch{n}{\pi}\integral_{0}^{\pi}{\blue{x}*cos(t)*cos(xsin(t)-nt) dt}[/mm]
>
> >
> > Der Faktor [mm]x*\cos\left(t\right)[/mm] ist fast die Ableitung von
> > [mm]xsin(t)-nt[/mm].
> >
> > Damit solltest Du weiter kommen.
> >
>
> Irgendwie komme ich nicht wirklich weiter, habe versucht
> nochmals partiell zu integrieren.....aber das hat nicht
> geklappt, da sich dann ja der hintere Teil wieder
> ändert....kannst du mir nochmals einen Tipp geben?
>
>
Wenn der erste Integrand
[mm]\left(x*cos(t)-n\right)*cos(xsin(t)-nt)[/mm]
lauten würde, dann wäre eine Stammfunktion
[mm]\\sin(xsin(t)-nt)[/mm]
Also ist
[mm]\integral_{}^{}{x*cos(t)*cos(xsin(t)-nt) dt}=\\sin(xsin(t)-nt)+\integral_{}^{}{n*cos(xsin(t)-nt) dt}[/mm]
> >
> > Gruss
> > MathePower
>
Gruss
MathePower
|
|
|
|