Bestimme Jordannormalform < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Hallo,
ich verweise mal direkt auf die Quelle der Aufgabe:
http://fuchsc.sbg.ac.at/ss14/linalg2_serie7.pdf (Aufgabe 2). |
Zu den Begriffen, (die offenbar unterschiedlich gehandhabt werden?!):
Jordannormalform besteht aus Teilmatrizen, die bei mir im Folgenden Jordanblöcke heißen.
Ein Jordanblock enthält in der Diagonalen immer denselben Wert (ein Eigenwert). Ein Jordanblock besteht wiederum aus einzelnen Teilmatrizen, den Jordankästchen.
Zur Aufgabe:
Meine Jordannormalform besteht also aus insgesamt 2 Jordanblöcken (ich habe lt. Angabe nur 2 Eigenwerte). Ein Block hat in der Diagonalen lauter $i$ stehen.
Um die Jordannormalform zu bestimmen brauche ich folgende Informationen:
a) die Anzahl der Jordankästchen im Jordanblock B1 bzgl. Eigenwert [mm] $t_1 [/mm] = i$.
b) die Anzahl der Jordankästchen im Jordanblock B2 bzgl. Eigenwert [mm] $t_2$
[/mm]
Damit kann ich die Einträge bestimmen, die auf der Nebendiagonalen ÜBER den jeweiligen Hauptdiagonalen (mit Eigenwerten als Einträgen) stehen. Dort steht entweder 0 oder 1.
1) Die Länge des Jordanblocks ist gegeben durch die algebraische Vielfachheit des entsprechenden Eigenwerts. Da ich weder das charakteristische Polynom noch die Vielfachheit von [mm] $t_1 [/mm] = i$ gegeben habe, kann ich hier nicht weitermachen.
2) Die Anzahl der Kästchen im Jordanblock B1 bestimme ich durch $dim ker (A - [mm] i\cdot E_6)$. [/mm] Laut meiner Rechnung erhalte ich:
$rg(A - [mm] i\cdotE_6) [/mm] = 4$. Damit ist $ dim ker (A - [mm] i\cdot E_6) [/mm] = 6 - 4= 2$.
Ich habe also 2 Kästchen in B1.
2.1) Nun möchte ich die Anzahl der Jordankästchen mit Länge L im Jordanblock B1 bestimmen. Ich beginne mit der Anzahl der Jordankästchen mit Länge L = 1.
Ja, und hier ist Schluss. Wie geht es hier weiter? Und: Habe ich bisher richtig gewerkelt?
|
|
|
|
Problem gelöst aufgrund der Tatsache, dass mit der komplexen Nullstelle i auch -i Nullstelle ist, weiterhin beide gleiche Vielfachheit haben und die Jordanmatrix damit eindeutig ist.
|
|
|
|