www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Bestimmung einer Galoisgruppe
Bestimmung einer Galoisgruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung einer Galoisgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:38 Mo 19.03.2007
Autor: Denny22

Aufgabe
Sei [mm] $L=\IQ(\sqrt{2},\sqrt{3},\sqrt{5})$. [/mm] Bestimme die Galoisgruppe

[mm] $G(L/\IQ)$ [/mm]

Hallo an alle Mathematiker und einen besonderen Gruß an die Algebraiker,

momentan wiederhole ich so zum Spaß ein wenig Algebra und meine Frage lautet zum einen, wie man die obige Aufgabe löst und zum anderen ob es irgendeine konkrete Vorgehensweise (also eine Art Kochrezept) gibt, an die man sich halten sollte um Galoisgruppen zu bestimmen.

Ich würde mich über eine ausführliche Erklärung zur Bestimmung einer Galoisgruppe sehr freuen.

Ich danke euch bereits einmal für eure Mühen.

Gruß Denny

        
Bezug
Bestimmung einer Galoisgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:41 Do 22.03.2007
Autor: comix

Ich kann leider keine vollständige Antwort auf die Frage liefern, aber vielleicht einen Ansatz:

Es geht um die Körpererweiterung [mm] \IQ (\wurzel[]{2}, \wurzel[]{3}, \wurzel[]{5}) \supset \IQ. [/mm]

Gesucht ist die Galoisgruppe [mm] Aut(\IQ (\wurzel[]{2}, \wurzel[]{3}, \wurzel[]{5}); \IQ), [/mm] d.h. alle Automorphismen auf [mm] \IQ (\wurzel[]{2}, \wurzel[]{3}, \wurzel[]{5}), [/mm] da [mm] \IQ [/mm] Primkörper ist.

[mm] \IQ (\wurzel[]{2}, \wurzel[]{3}, \wurzel[]{5}) [/mm] ist Zerfällungskörper des Polynoms f := [mm] (X^2-2)(X^2-3)(X^2-5) \in \IQ[X] [/mm] .

Für jeden Automorphismen a gilt:

2 = a(2) = [mm] a(\wurzel[]{2}^2) [/mm] = [mm] (a(\wurzel[]{2}))^2, [/mm] also gilt [mm] a(\wurzel[]{2}) \in [/mm] { [mm] \wurzel[]{2}, -\wurzel[]{2} [/mm] }
Ebenso für [mm] \wurzel[]{3} [/mm] und [mm] \wurzel[]{5}. [/mm]

Es gibt demnach 8 Automorphismen: {id, [mm] a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7} [/mm] }

Für alle gilt:  [mm] a_{1}^2 [/mm] = [mm] a_{2}^2 [/mm] = [mm] a_{3}^2 [/mm] = [mm] a_{4}^2 [/mm] = [mm] a_{5}^2 [/mm] = [mm] a_{6}^2 [/mm] = [mm] a_{7}^2 [/mm] = id

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]