www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Beweis Determinante+Primzahl
Beweis Determinante+Primzahl < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Determinante+Primzahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Do 26.01.2006
Autor: Sherin

Aufgabe
Sei p eine Primzahl und sei [mm] r_{p}: \IZ \to \IF_{p} [/mm] die Abbildung, die jeder Zahl ihren Rest nach der Division durch p zuordnet. Sei A =  [mm] a_{ij} [/mm] eine Matrix in  [mm] \IR^{n,n} [/mm] mit Einträgen in  [mm] \IZ. [/mm] Dann ist A' := [mm] (r_{p}(a_{ij})) [/mm] eine Matrix in [mm] \IF_{p}^{n,n}. [/mm] Zeigen Sie, dass det (A) [mm] \in \IZ [/mm] und dass det (A') = [mm] r_{p}(det(A)). [/mm]  

Hallo,
ich kann mit dieser Aufgabe leider überhaupt gar nichts anfangen! Kann mir jemand kurz erklären, wie ich an diese Aufgabe drangehen kann.. Ihr wärt meine Rettung.. Danke!

Lg,
Sherin

        
Bezug
Beweis Determinante+Primzahl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Do 26.01.2006
Autor: Stefan

Hallo Sherin!

Die Frage kam in letzter Zeit häufiger, bitte schau dich mal im Forum um und suche danach.

Klar ist: Die Determinante, eingeschränkt auf die Matrizen mit ganzzahligen Einträgen, ist eine multilineare Abbildung von [mm] $\IZ^{n \times n}$ [/mm] nach (zunächst) [mm] $\IR$, [/mm] also ist [mm] $\det(A)$ [/mm] eine Summe von Produkten von ganzen Zahlen und damit selbst ganzzahlig.

Die angegebenene Gleichheit folgt aus der Definition der Addition und Multiplikation in [mm] $\IF_p$ [/mm] über die Repräsentanten (aus [mm] $\IZ$): [/mm]

[mm] $\overline{a} [/mm] + [mm] \overline{b} [/mm] = [mm] \overline{a+b}$, [/mm]
[mm] $\overline{a} \cdot \overline{b} [/mm] = [mm] \overline{a \cdot b}$. [/mm]

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]